首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 311 毫秒
1.
流式细胞术是一种采用激光束激发单行流动的细胞,对它的散射光和携带的荧光进行探测,从而完成细胞分析和分选的技术。以流式细胞术为核心技术,流式细胞仪集光学、电子学、生物学、免疫学等多门学科和技术于一体,能够高效分析微小颗粒(如细胞,细菌)的先进科技设备。它对社会产生了深远的影响,成为了科学研究的必要工具。最近几年,流式细胞仪取得了长足进步。为了深入的了解它,本文从流式细胞仪的工作原理和技术指标,在临床医学、生物学、生殖学和制药学中的应用,以及它的世界格局、仪器功能的最新进展三方面,进行了简明、扼要的论述。展望未来:功能专业化、自动化,体积小型化,多色多参数分析能力提高和分析分选速度更快成为流式细胞仪发展的趋势。  相似文献   

2.
流式细胞术在细菌快速检测中的应用   总被引:8,自引:0,他引:8  
流式细胞仪(Flow cytometer)是集应用流体学、光学、电子学、生物学、免疫学等多门学科和技术于一体的新型高科技仪器。它的核心技术是流式细胞术(Flow cytometry,FCM),该技术是利用流式细胞仪,使单个细胞或其他微小生物粒子处于快速直线流动状态,且逐个通过光束,从而对单个细胞或微粒进行多参数(数量、大小、核酸含量、细胞活性、特定菌群或物种等)定量分析和分选的检测技术,具有快速、灵敏、精确以及便于操作等突出优点。本文简要介绍流式细胞仪的原理,并论述流式细胞技术在实验室研究、工业生产、临床诊断、环境评估等领域的细菌快速检测应用。  相似文献   

3.
<正>流式细胞仪(flow cytometer)是一种在功能水平上对单细胞或其他生物粒子进行定量分析和分选的检测仪器,可以每秒钟分析上万个细胞/粒子,并能同时从一个细胞/粒子中获得多个参数。其应用范围非常广泛,而且还在不断拓展,细胞分选也是它的重要应用之一。它能够根据每个细胞的光散射和荧光特征,将特定的细胞从细胞群体中分选出来。下文以细胞为例具体说明流式细胞仪的工作原理、技术特点和应用。流式细胞仪能够利用细胞的光散射特征,  相似文献   

4.
以流动中的细胞或颗粒为测量对象的流式细胞术能够在短时间内提供具有统计意义的大量单细胞、颗粒或集聚体的测量数据。经过70多年的发展,它已经成为生物学、医学、环境检测等多领域不可或缺的技术。这一技术于20世纪40年代被提出,于70年代成型,并在此后40多年里,检测性能、多参数测量能力和分选能力得到显著发展,而它的应用领域更是飞速扩展到从细菌、环境微生物检测、常规细胞功能检测,到许多临床疾病诊断和监测,再到最前沿的肿瘤免疫机理研究、免疫疗法和生物制药等广泛领域。当前,一系列新技术和相应的新型流式细胞仪被开发出来,虽然工作原理有别于传统方式,但获取大规模单细胞多参数测量的理念从未变化。流式细胞术领域正处于技术大发展和大变革的前夜。  相似文献   

5.
流式细胞术在高等植物研究中的应用   总被引:7,自引:1,他引:6  
流式细胞术(FCM)是根据所测定的各种细胞性质的不同组合,从细胞群体中把某个亚群分选出来,并对它的功能和形态学进行研究或进一步培养分析。流式细胞术具有快速、灵敏和同时进行多参数检测等优点,对其基本原理和在高等植物中的应用进行了介绍。  相似文献   

6.
流式细胞术   总被引:1,自引:0,他引:1  
流式细胞术发展简史 流式细胞术(flow cytometry,FCM)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术.其特点是:①测量速度快,最快可在1s内计测数万个细胞;②可进行多参数测量,对同一个细胞做有关物理、化学特性的多参数测量,并具有明显的统计学意义;③是一门综合性的高科技方法,它综合了激光技术、计算机技术、流体力学、细胞化学、图像技术等众多领域的知识和成果;④既是细胞分析技术,又是精确的分选技术.  相似文献   

7.
用western-blotting法测定乙醇固定细胞中细胞周期素(cyclin)的表达情况,探索western-blotting和流式细胞仪对固定细胞在流式细胞术分选前或分选后对同批标本进行蛋白同步分析的可行性,采用对数生长期的Molt-4细胞,经两种常规固定方法固定后,用western-blotting方法检测cyclinA,B1、D和E的表达,另取乙醇固定经流式细胞仪分选的G1期和G2/M期细胞裂解后,用western-blotting方法检测不同时相细胞中cyclinB1的表达。结果显示从固定细胞中提取的蛋白经western-blotting检测可得到清晰且分子量正确的条带,两种不同方法固定的细胞中检测到的cyclins表达未见明显差异。乙醇固定细胞经分选后提取蛋白行western-blotting检测可见G2/M期细胞的cyclinB1有明显表达而G1期细胞不明显。细胞进行固定,洗涤,染色和分选等处理后不影响western-blotting对其cyclins表达的分析。说明用western-blotting和流式细胞仪对固定细胞在流式细胞术分选前或分选后进行蛋白同步分析是可行的。  相似文献   

8.
流式细胞术在水体微型生物分子生物学研究中的应用   总被引:2,自引:0,他引:2  
流式细胞术(FCM)是利用流式细胞仪对微小生物颗粒物的多种物理、生物学特性进行定量,并对特定细胞群体进行分选的分析测量技术。流式细胞仪是当代激光、流体力学、光学和电子计算机等学科技术高度发展的产物,是生命科学研究领域中先进的仪器之一。FCM最早应用于海洋生物学是在80年代中期,特别是1988年发现原绿球藻后[1],FCM成为研究水生微型生物(包括超微型生物)的重要手段。近年来,该领域的有关研究已成为海洋生命科学的研究热点,并从最初区分、记数不同微型浮游植物种群,发展到现在DNA分析和以荧光分子探针为辅助手段的系统发育分析…  相似文献   

9.
流式细胞术   总被引:6,自引:0,他引:6  
流式细胞术是一种综合应用光学、机械学、流体力学、电子计算机、细胞生物学、分子免疫学等学科技术,对高速流动的细胞或亚细胞进行快速定量测定和分析的方法。它一秒钟能分析几千个细胞,并同时测定细胞的多个参数,广泛应用于生物医学的许多领域,如测定细胞的特征(形态、膜电位等)和细胞内pH,细胞DNA、蛋白质含量、表面受体、Ca2+等。对生物工程学来说,了解细胞的这些参数尤为重要,因为它们能比用传统技术测得的数据更好地描述细胞群体。从流式细胞仪对细胞多种参数的测定及原理,到它在生物工程学中的应用等方面进行了介绍,并讨论了流式细胞术的局限性和面临的挑战。  相似文献   

10.
荧光蛋白在特异组织和器官表达的转基因斑马鱼已经在发育生物学和疾病模型研究中得到了广泛的应用。这些转基因系有助于追踪和分析数量较少的细胞群。但是如果要分离得到这些细胞来定量分析mRNA或蛋白质的表达情况比较困难。利用流式细胞仪分选这些荧光标记细胞是一种解决办法。此方法在不同的实验室中被广泛地应用。也有相关流程的介绍。但是流程一般较为繁琐,操作比较困难。该文以从转基因斑马鱼Tg(Kdrl:EGFP)中分选绿色荧光蛋白阳性的血管内皮细胞为例,介绍利用流式细胞仪分选转基因斑马鱼荧光标记细胞的实验流程和技术要点。该文作者在前人工作的基础上结合大量的实验经验.发展并优化了一套操作简便、效率较高的流程来分选这些细胞,在此做详细的介绍给大家以供参考。  相似文献   

11.
Flow cytometry is a sophisticated instrument measuring multiple physical characteristics of a single cell such as size and granularity simultaneously as the cell flows in suspension through a measuring device. Its working depends on the light scattering features of the cells under investigation, which may be derived from dyes or monoclonal antibodies targeting either extracellular molecules located on the surface or intracellular molecules inside the cell. This approach makes flow cytometry a powerful tool for detailed analysis of complex populations in a short period of time. This review covers the general principles and selected applications of flow cytometry such as immunophenotyping of peripheral blood cells, analysis of apoptosis and detection of cytokines. Additionally, this report provides a basic understanding of flow cytometry technology essential for all users as well as the methods used to analyze and interpret the data. Moreover, recent progresses in flow cytometry have been discussed in order to give an opinion about the future importance of this technology.  相似文献   

12.
Flow cytometry is a key instrument in biological studies, used to identify and analyze cells in suspension. The identification of cells from debris is commonly based on light scatter properties as it has been shown that there is a relationship between forward scattered light and cell volume and this has become common practice in flow cytometry. Cryobiological conditions induce changes in cells that alter their light scatter properties. Cells with membrane damage from freeze–thaw stress produce lower forward scatter signals and may fall below standard forward scatter thresholds. In contrast to light scatter properties that cannot identify damaged cells from debris, fluorescent dyes used in membrane integrity and mitochondrial polarization assays are capable of labeling and discriminating all cells in suspension. Under cryobiological conditions, isolating cell populations is more effectively accomplished by gating on fluorescence rather than light scatter properties. This study shows the limitations of using forward scatter thresholds in flow cytometry to identify and gate cells after exposure to a freeze–thaw protocol and demonstrates the use of fluorescence as an alternative means of identifying and analyzing cells.  相似文献   

13.
Flow cytometry is an automated, laser- or impedance-based, high throughput method that allows very rapid analysis of multiple chemical and physical characteristics of single cells within a cell population. It is an extremely powerful technology that has been used for over four decades with filamentous fungi. Although single cells within a cell population are normally analysed rapidly on a cell-by-cell basis using the technique, flow cytometry can also be used to analyse cell (e.g. spore) aggregates or entire microcolonies. Living or fixed cells can be stained with a wide range of fluorescent reporters to label different cell components or measure different physiological processes. Flow cytometry is also suited for measurements of cell size, interaction, aggregation or shape using non-labelled cells by means of analysing their light scattering characteristics. Fluorescence-activated cell sorting (FACS) is a specialized form of flow cytometry that provides a method for sorting a heterogeneous mixture of cells into two or more containers based upon the fluorescence and/or light scattering properties of each cell. The major advantage of analysing cells by flow cytometry over microscopy is the speed of analysis: thousands of cells can be analysed per second or sorted in minutes. Drawbacks of flow cytometry are that specific cells cannot be followed in time and normally spatial information relating to individual cells is lacking. A big advantage over microscopy is when using FACS, cells with desired characteristics can be sorted for downstream experimentation (e.g. for growth, infection, enzyme production, gene expression assays or ‘omics’ approaches). In this review, we explain the basic concepts of flow cytometry and FACS, define its advantages and disadvantages in comparison with microscopy, and describe the wide range of applications in which these powerful technologies have been used with filamentous fungi.  相似文献   

14.
FLOW CYTOMETRY AND THE SINGLE CELL IN PHYCOLOGY   总被引:1,自引:0,他引:1  
Flow cytometers measure light scattering and fluorescence characteristics from individual particles in a fluid stream as they cross one or more light beams at rates of up to thousands of events per second. Flow cytometrically detectable optical signals may arise naturally from algae, reflecting cell size, structure, and endogenous pigmentation, or may be generated by fluorescent stains that report the presence of otherwise undetected cellular constituents. Some flow cytometers can physically sort particles with desired optical characteristics out of the flow stream and collect them for subsequent culture or other analyses. The statistically rigorous, cell‐level perspective provided by flow cytometry has been advantageous in experimental investigations of phycological problems, such as the regulation of cell cycle progression. The capacity of flow cytometry to measure large numbers of cells in large numbers of samples rapidly and quantitatively has been used extensively by biological oceanographers to define the distributions and dynamics of marine picophytoplankton. Recent work has shown that flow cytometry can be used to elucidate relationships between the optical properties of individual cells and the bulk optical properties of the water they live in, and thereby may provide an explicit link between algal physiology and global biogeochemistry. Unfortunately, commercially available flow cytometers that are optimized for biomedical applications have a limited capacity to analyze larger phytoplankton. To circumvent these limitations, many investigators are developing flow cytometers specifically designed for analyzing the broad range of sizes, shapes, and pigments found among algae. These new instruments can perform some novel measurements, including simple fluorescence excitation spectra, detailed angular scattering measurements, and in‐flow digital imaging. The growing accessibility and power of flow cytometers may allow the technology to be applied to a wider array of problems in phycology, including investigations of nonplanktonic and multicellular algae, but also presents new challenges for effectively analyzing the large quantity of multiparameter data produced. Ultimately, the detection of molecular probes by flow cytometry may allow single‐cell taxonomic and physiological information to be garnered for a variety of algae, both in culture and in nature.  相似文献   

15.
Applications of flow cytometry to ecotoxicity testing using microalgae   总被引:7,自引:0,他引:7  
Flow cytometry is a rapid method for the quantitative measurement of light scattering and fluorescent properties of cells. Although this technique has been widely applied to biomedical and environmental studies, its potential as a tool in ecotoxicological studies has not yet been fully exploited. This article describes the application of flow cytometry to the development of bioassays with marine and freshwater algae for assessing the bioavailability of contaminants in waters and sediments.  相似文献   

16.
Analysis of virus-infected cells by flow cytometry   总被引:5,自引:0,他引:5  
Flow cytometry has been used to study virus-cell interactions for many years. This article critically reviews a number of reports on the use of flow cytometry for the detection of virus-infected cells directly in clinical samples and in virus-infected cultured cells. Examples are presented of the use of flow cytometry to screen antiviral drugs against human immunodeficiency virus (HIV), human cytomegalovirus, and herpes simplex viruses (HSV) and to perform drug susceptibility testing for these viruses. The use of reporter genes such as green fluorescent protein incorporated into HIV or HSV or into cells for the detection of the presence of virus, for drug susceptibility assay, and for viral pathogenesis is also covered. Finally, studies on the use of flow cytometry for studying the effect of virus infection on apoptosis and the cell cycle are summarized. It is hoped that this article will give the reader some understanding of the great potential of this technology for studying virus cell interactions.  相似文献   

17.
High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. That inactivation is usually assessed by the number of colonies growing on solid media after treatment. Under normal conditions the method does not permit recovery of damaged cells and may underestimate the number of cells that will remain viable and grow after a few days in high-pressure-processed foodstuffs. This study investigated the damage inflicted on Listeria monocytogenes cells treated by high pressure for 10 min at 400 MPa in pH 5.6 citrate buffer. Under these conditions, no cell growth occurred after 48 h on plate count agar. Scanning electron microscopy, light scattering by flow cytometry, and cell volume measurements were compared to evaluate the morphological changes in cells after pressurization. All these methods revealed that cellular morphology was not really affected. Esterase activity, as assessed either by enzymatic activity assays or by carboxy fluorescein diacetate fluorescence monitored by flow cytometry, was dramatically lowered, but not totally obliterated, under the effects of treatment. The measurement of propidium iodide uptake followed by flow cytometry demonstrated that membrane integrity was preserved in a small part of the population, although the membrane potential measured by analytical methods or evaluated by oxonol uptake was reduced from -86 to -5 mV. These results showed that such combined methods as fluorescent dyes monitored by flow cytometry and physiological activity measurements provide valuable indications of cellular viability.  相似文献   

18.
High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. That inactivation is usually assessed by the number of colonies growing on solid media after treatment. Under normal conditions the method does not permit recovery of damaged cells and may underestimate the number of cells that will remain viable and grow after a few days in high-pressure-processed foodstuffs. This study investigated the damage inflicted on Listeria monocytogenes cells treated by high pressure for 10 min at 400 MPa in pH 5.6 citrate buffer. Under these conditions, no cell growth occurred after 48 h on plate count agar. Scanning electron microscopy, light scattering by flow cytometry, and cell volume measurements were compared to evaluate the morphological changes in cells after pressurization. All these methods revealed that cellular morphology was not really affected. Esterase activity, as assessed either by enzymatic activity assays or by carboxy fluorescein diacetate fluorescence monitored by flow cytometry, was dramatically lowered, but not totally obliterated, under the effects of treatment. The measurement of propidium iodide uptake followed by flow cytometry demonstrated that membrane integrity was preserved in a small part of the population, although the membrane potential measured by analytical methods or evaluated by oxonol uptake was reduced from −86 to −5 mV. These results showed that such combined methods as fluorescent dyes monitored by flow cytometry and physiological activity measurements provide valuable indications of cellular viability.  相似文献   

19.
An immunofluorescent staining procedure has been developed to identify, with flow cytometry, replicating cells of Saccharomyces cerevisiae after incorporation of bromodeoxyuridine (BrdUrd) into the DNA. Incorporation of BrdUrd is made possible by using yeast strains with a cloned thymidine kinase gene from the herpes simplex virus. An exposure time of 4 min to BrdUrd results in detectable labeling of the DNA. The BrdUrd/DNA double staining procedure has been optimized and the flow cytometry measurements yield histograms comparable to data typically obtained for mammalian cells. On the basis of the accurate assessment of cell fractions in individual cell cycle phases of the asynchronously growing cell population, the average duration of the cell cycle phases has been evaluated. For a population doubling time of 100 min it was found that cells spend in average 41 min in the replicating phase and 24 min in the G2+M cell cycle period. Assuming that mother cells immediately reenter the S phase after cell division, daughter cells spend 65 min in the G1 cell cycle phase. Together with the single cell fluorescence parameters, the forward-angle light scattering intensity (FALS) has been determined as an indicator of cell size. Comparing different temporal positions within the cell cycle, the determined FALS distributions show the lowest variability at the beginning of the S phase. The developed procedure in combination with multiparameter flow cytometry should be useful for studying the kinetics and regulation of the budding yeast cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号