首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
动物线粒体基因组变异研究进展   总被引:1,自引:0,他引:1  
动物mtDNA大多是共价闭合的环状双链分子,一般由2个非编码区和37个编码基因组成,不同动物线粒体基因组大小变异明显.孑遗疟虫(Plasmodium reichenowi)的线粒体基因组最小,仅为5966bp;领鞭毛虫(Monosiga brevicollis)的最大,达76568bp.动物线粒体基因组大小变异的原因主要有:控制区串联重复元件的变异;基因重复;基因重叠与基因间隔区大小的差异;基因缺失和增加.  相似文献   

2.
采用普通PCR扩增、SHOT-GUN测序、软件拼接首次获得了池蝶蚌(Hyriopsis schlegelii)线粒体基因组全序列。线粒体基因组全长为15939 bp,由13个蛋白质编码基因、22个tRNA基因、2个SrRNA基因和28个长度为1—393 bp的非编码区组成;除ND3-ND5、ND4L、ATP6、ATP8、COX1-COX3、tRNA-D、tRNA-H之外,其他大多数基因在L链编码。池蝶蚌线粒体全基因组序列、蛋白编码基因、tRNA基因、rRNA基因及非编码区的A+T含量分别为60.36%、59.84%、61.7%、60.23%及62.5%,与其他淡水蚌类一致,均表现出A+T偏好性,淡水蚌类线粒体基因组长度的差异主要表现在非编码区长度的差异。池蝶蚌mtDNA的COX2-12SrRNA区域基因排列存在差异,是ND3、tRNAHis、tRNAAla、tRNASer1、tRNASer2、tRNAGlu、ND2、tRNAMet 8个基因发生重组造成。22个tRNA基因都具有典型的三叶草二级结构,tRNA-E与tRNA-W间的非编码区含有一个ORF区,而控制区并未发现。从GenBank上下载的14种双壳纲贝类的mtDNA序列构建的系统进化树,显示池蝶蚌与三角帆蚌亲缘关系最近。研究结果为淡水珍珠蚌线粒体基因重排及进化特征提供理论依据。  相似文献   

3.
本研究以宁夏枸杞(Lycium barbarum)的主栽品种‘宁杞1号’为参照,分别从基因构成、内含子分布、同源共线性、保守基因簇、重复序列,以及系统进化等方面与目前已报道的辣椒(Capsicum annuum)、茄子(Solanum melongena)、马铃薯(S.tuberosum)、番茄(S.lycopersicum)、天仙子(Hyoscyamus niger)和烟草(Nicotiana tabacum)等六种茄科(Solanaceae)植物的线粒体基因组进行比较分析,以进一步了解它们的线粒体基因组在结构组成上的异同和亲缘关系。结果表明,茄科不同植物的线粒体基因组大小差异较大,从413 881 bp(宁夏枸杞)到688 698 bp(马铃薯)不等,基因数量在61~71个,其中的蛋白质编码基因除在宁夏枸杞和辣椒中为单拷贝以外,在茄科其他植物中均出现不同程度的多拷贝现象。宁夏枸杞分别与茄子(16个)、马铃薯(16个)和天仙子(15个)共有较多数量的保守基因簇。通过线粒体基因组重复序列分析发现,宁夏枸杞与辣椒的重复序列数量接近,但宁夏枸杞中的简单重复序列(simple sequenc...  相似文献   

4.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(2):320-327
采用普通PCR扩增、SHOT-GUN测序、软件拼接首次获得了池蝶蚌(Hyriopsis schlegelii)线粒体基因组全序列。线粒体基因组全长为15939 bp,由13个蛋白质编码基因、22个tRNA基因、2个SrRNA基因和28个长度为1393 bp的非编码区组成;除ND3-ND5、ND4L、ATP6、ATP8、COX1-COX3、tRNA-D、tRNA-H之外,其他大多数基因在L链编码。池蝶蚌线粒体全基因组序列、蛋白编码基因、tRNA基因、rRNA基因及非编码区的A+T含量分别为60.36%、59.84%、61.7%、60.23%及62.5%,与其他淡水蚌类一致,均表现出A+T偏好性,淡水蚌类线粒体基因组长度的差异主要表现在非编码区长度的差异。池蝶蚌mtDNA的COX2-12SrRNA区域基因排列存在差异,是ND3、tRNAHis、tRNAAla、tRNASer1、tRNASer2、tRNAGlu、ND2、tRNAMet 8个基因发生重组造成。22个tRNA基因都具有典型的三叶草二级结构,tRNA-E与 tRNA-W间的非编码区含有一个ORF区,而控制区并未发现。从GenBank上下载的14种双壳纲贝类的mtDNA序列构建的系统进化树,显示池蝶蚌与三角帆蚌亲缘关系最近。研究结果为淡水珍珠蚌线粒体基因重排及进化特征提供理论依据。    相似文献   

5.
植物线粒体基因组作为植物细胞中三个遗传系统之一 ,在转录和转录后的加工中存在有许多特殊性 :在基因组结构中 ,植物线粒体基因组比较大 ,且不同物种间差异较大 ;其转录过程具有许多特点 ,例如可以起始于编码区的多个位点等 ;在高等植物中 ,所发现的线粒体基因内含子大多是II型内含子 ,这些内含子有时编码蛋白 ;植物线粒体基因转录后的编辑中C -U转换是一个十分明显的特征 ;在线粒体中 ,多腺化使转录本趋于不稳定 ,而在细胞核中 ,RNA的多腺化可以增强转录本的稳定性。综述了植物线粒体基因组结构以及转录后的编辑、剪接、多腺化等方面的特点和研究进展 。  相似文献   

6.
目的 获得中国地鼠线粒体基因组序列,为线粒体疾病模型提供分子数据.方法 参照近缘物种的线粒体基因组序列,设计27对特异引物,采用TD-PCR及测序技术获得了中国地鼠的线粒体全基因组序列,分析了其基因组特点和各基因的定位.还结合GenBank中已发表的其他5种啮齿类动物的线粒体基因组序列,探讨啮齿类动物不同科间的系统进化关系.结果 中国地鼠线粒体基因组全长为16 283 bp,碱基组成为33.53%A、30.50%T、12.98%G、22.80%C,包括13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码基因控制区.中国地鼠和金黄地鼠亲缘关系最近.结论 中国地鼠线粒体基因组各基因长度、位置与典型的啮齿类动物相似,其编码蛋白质区域和rRNA基因与其他啮齿类动物具有很高的同源性,显示线粒体基因组在进化上十分保守.5种动物的分子系统进化树与传统分类地位一致.  相似文献   

7.
桔小实蝇线粒体基因组全序列及其分析   总被引:1,自引:0,他引:1  
桔小实蝇Bactrocera dorsalis线粒体基因组全序列对研究实蝇分子系统进化具有重要意义。本研究通过DNA测序和克隆技术,对桔小实蝇mtDNA全序列进行了测定和分析。结果表明:桔小实蝇线粒体基因组全长15 915 bp(GenBank序列号: DQ845759)。基因组碱基组成为39.3%A,16.2%C,10.2%G,34.3%T,由13个蛋白编码基因、22个tRNA基因、2个rRNA基因以及一个非编码的控制区域(A+T-rich区)组成。7个蛋白编码基因和13个tRNA基因从J链编码,其余6个蛋白编码基因和9个tRNA基因从N链编码。位于J链上的蛋白编码基因具有近似的A、T含量,而位于N链上的蛋白编码基因的A的含量明显高于T的含量。以mtDNA COⅠ基因为例,比较了桔小实蝇与其他14种实蝇的亲缘关系,结果显示其与同亚属(果实蝇亚属Bactrocera)内的其他近缘种相互间的同源性很高。  相似文献   

8.
自从六十年代发现线粒体DNA(mtDNA)以来,mtDNA在遗传上的功能引起了广泛的重视。由于线粒体具有自已的基因组,能够自我复制,又能编码一些酶,比如生物氧化链上的一部分酶的亚基就是由线粒体基因编码的,可以推测生物的某些性状的表达可能与mt-DNA有关;另外由于实现线粒体基因组的复制与表达所需的许多酶又是由核基因编码的(如DNA聚合酶,RNA聚合酶、DNA连接酶等),可以推测  相似文献   

9.
线粒体是真核细胞内参与能量生成和物质代谢的重要细胞器,拥有自身的基因组DNA.线粒体基因的表达调控对线粒体功能的维持至关重要.根据分子生物学中心法则,遗传信息是从DNA传递给RNA,再从RNA传递给蛋白质.线粒体DNA(mtDNA)编码13个信使RNA(mRNA)、2个核糖体RNA(rRNA)和22个转运RNA(tRN...  相似文献   

10.
藏鸡生活在青藏高原, 它对高原低氧具有一定的遗传适应能力. 丝羽乌骨鸡和寿光鸡都是低地鸡种, 缺乏对低氧环境的遗传适应能力. 鸡的线粒体基因组总长16785 bp, 共编码37个基因, 这些基因的编码产物均与线粒体的呼吸作用和氧化磷酸化相关, 它们的突变均有可能影响线粒体的功能, 因此均可被选为藏鸡低氧遗传适应的候选基因. 测定比较藏鸡和低地鸡的线粒体基因组, 可以为进一步研究藏鸡的低氧遗传适应机理提供线索. 本研究测定和比较了藏鸡、丝羽乌骨鸡和寿光鸡的线粒体全基因组序列, 发现藏鸡线粒体基因组总长为16784~16786 bp, 丝羽乌骨鸡为16785 bp, 寿光鸡为16784 bp; 比对后共发现突变(包括单核苷酸多态性(SNP)、单碱基缺失和插入)120个, 其中tRNA基因突变4个, rRNA基因突变10个, D-LOOP区突变39个, 基因间隔区突变1个, 编码蛋白质亚基的碱基突变66个(包括同义突变48个, 错义突变18个).  相似文献   

11.
A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.  相似文献   

12.
首次对我国西藏小反刍兽疫病毒China/Tib/Gej/07-30的核衣壳蛋白(N)基因和基因组启动子(GP)区进行序列测定和分子生物学特征分析。首先应用逆转录聚合酶链式反应从发病山羊病料中扩增出小反刍兽疫病毒N基因片段,用cDNA3′末端快速扩增方法获得基因组启动子区片段,对聚合酶链式反应产物进行直接测序,然后对测定的核苷酸和推测的氨基酸序列进行比较分析,绘制系统发生树。我国西藏小反刍兽疫病毒China/Tib/Gej/07-30的N基因由1689个核苷酸组成,编码525个氨基酸,与India/Jhansi/03等6个已知N基因全序列的PPRV毒株核苷酸和氨基酸序列同源性分别为91.7~97.6和94.9~98.5。小反刍兽疫病毒China/Tib/Gej/07-30N蛋白与磷蛋白作用的结构序列之一为495LFRLQAM501保守序列,N蛋白281-289位氨基酸含有一个T细胞表位,为281YPALGLHEF289保守序列。小反刍兽疫病毒China/Tib/Gej/07-30的GP区由107个核苷酸组成,与Tur-key2000等5株其他PPRV毒株同源性为91.8~98.2。N基因核苷酸序列和相应的氨基酸序列系统进化分析表明小反刍兽疫病毒China/Tib/Gej/07-30与亚洲国家分离株关系最近。  相似文献   

13.
We have studied the segregation and manifestations of the tRNA(Lys) A-->G(8344) mutation of mtDNA. Three unrelated patients with myoclonus epilepsy and ragged-red fibers (MERRF) syndrome were investigated, along with 30 of their maternal relatives. Mutated mtDNA was not always found in the offspring of women carrying the tRNA(Lys) mutation. Four women had 10%-33% of mutated mtDNA in lymphocytes, and no mutated mtDNA was found in 7 of their 14 investigated children. The presence of mutated mtDNA was excluded at a level of 3:1,000. Five women had a proportion of 43%-73% mutated mtDNA in lymphocytes, and mutated mtDNA was found in all their 12 investigated children. This suggests that the risk for transmission of mutated mtDNA to the offspring increases if high levels are present in the mother and that, above a threshold level of 35%-40%, it is very likely that transmission will occur to all children. The three patients with MERRF syndrome had, in muscle, both 94%-96% mutated mtDNA and biochemical and histochemical evidence of a respiratory-chain dysfunction. Four relatives had a proportion of 61%-92% mutated mtDNA in muscle, and biochemical measurements showed a normal respiratory-chain function in muscle in all cases. These findings suggest that > 92% of mtDNA with the tRNA(Lys) mutation in muscle is required to cause a respiratory-chain dysfunction that can be detected by biochemical methods. There was a positive correlation between the levels of mtDNA with the tRNA(Lys) mutation in lymphocytes and the levels in muscle, in all nine investigated cases. The levels of mutated mtDNA were higher in muscle than in lymphocytes in all cases. In two of the patients with MERRF syndrome, muscle specimens were obtained at different times. In both cases, biochemical measurements revealed a deteriorating respiratory-chain function, and in one case a progressive increase in the amount of cytochrome c oxidase-deficient muscle fibers was found.  相似文献   

14.
The region of mitochondrial DNA (mtDNA) containing the oxi 2 locus has been sequenced in a rho- clone (DS40) derived from the respiratory competent strain D273-10B/A48 of Saccharomyces cerevisiae. The DS40 clone was established to have retained only genetic markers in the oxi 2 locus and to have a segment of mtDNA extending from 18.6 to 24.3 units of the wild type map. The mitochondrial genome of DS40 includes a sequence that has been tentatively identified as the structural gene of Subunit 3 of cytochrome oxidase. The coding sequence is 810 nucleotides long and generates a protein with a molecular weight of 30,340. The amino acid composition of the oxi 2 gene product deduced from the nucleotide sequence is in agreement with the composition of the purified Subunit 3 of yeast cytochrome oxidase. The orientation of the DS40 mtDNA segment relative to wild type mtDNA indicates that the oxi 2 gene is transcribed from the same DNA strand as the oxi 1 and several other mitochondrial genes.  相似文献   

15.
Summary Variation within and between eight subspecies of Canada geese was assessed by restriction fragment analysis of mitochondrial DNA (mtDNA), electrophoresis of proteins encoded by nuclear DNA, and the morphometric analysis of skeletons. Estimates of mtDNA sequence divergence between Canada goose subspecies ranged from 0.04 to 2.54%. Pairwise comparisons of the three data matrices revealed that only mtDNA variation and body size are significantly correlated. Subspecies with northern breeding grounds are small-bodied and display small variations of one mtDNA clone, whereas those breeding further south are largebodied and show small differences in another mtDNA clone. Canada geese exhibit strong geographic differentiation with respect to mtDNA sequence, but weak structuring in protein-encoding nuclear DNA. This finding can be explained by a lower level of gene flow for the mitochondrial genome than for the nuclear genome, which in turn emanates from the maternal inheritance of mtDNA and male-biased dispersal in Canada geese. Despite male-mediated flow of nuclear genes, strong morphometric differentiation persists among Canada geese subspecies.  相似文献   

16.
In cultures of the mit- mutant strain Mb12 of Saccharomyces cerevisiae (carrying a mutation in the oli2 gene), 70% of the cells are petite mutants. More than 80% of the petites from Mb12 contain a particular mtDNA segment, denoted BB5, that is 880 bp long and carries a single MboI site. Thus, in cultures of Mb12, about 56% of the cells are petites containing the defective BB5 mtDNA genome, and only 30% are mit- cells containing parental Mb12 mtDNA. The BB5 mtDNA segment is also found in petites arising from the wild-type strain J69-1B (from which Mb12 was derived), but in this case mtDNA from only five out of 24 petites produced an 880 bp band after MboI digestion. Since J69-1B cultures carry a petite frequency of about 5%, approximately 1% of cells in J69-1B cultures contain the BB5 mtDNA segment. The difference between Mb12 and J69-1B cultures is reflected in the MboI digestion patterns of the respective mtDNAs. While Mb12 mtDNA contains a grossly superstoicheiometric 880 bp MboI fragment, the corresponding fragment in J69-1B mtDNA cannot be seen on stained gels, but can be readily visualized in Southern blots hybridized to a 32P-labelled DNA probe obtained from the 880 bp MboI fragment. The BB5 mtDNA segment was shown to contain the ori1 sequence (one of several very similar sequences in wild-type mtDNA thought to act as origins of replication of mtDNA) which confers the genetic property of very high suppressiveness on petites carrying this mtDNA. The efficient replication of BB5 mtDNA may contribute to its abundance in Mb12 cultures. Nevertheless, other factors must operate to influence the abundance of the BB5 mtDNA segment in cultures of different strains, the most important of which is likely to be the rate of excision of this mtDNA segment from the parental mtDNA genome.  相似文献   

17.
We report the complete nucleotide sequence of the Tetrahymena pyriformis mitochondrial genome and a comparison of its gene content and organization with that of Paramecium aurelia mtDNA. T. pyriformis mtDNA is a linear molecule of 47,172 bp (78.7 % A+T) excluding telomeric sequences (identical tandem repeats of 31 bp at each end of the genome). In addition to genes encoding the previously described bipartite small and large subunit rRNAs, the T. pyriformis mitochondrial genome contains 21 protein-coding genes that are clearly homologous to genes of defined function in other mtDNAs, including one (yejR) that specifies a component of a cytochrome c biogenesis pathway. As well, T. pyriformis mtDNA contains 22 open reading frames of unknown function larger than 60 codons, potentially specifying proteins ranging in size from 74 to 1386 amino acid residues. A total of 13 of these open reading frames ("ciliate-specific") are found in P. aurelia mtDNA, whereas the remaining nine appear to be unique to T. pyriformis; however, of the latter, five are positionally equivalent and of similar size in the two ciliate mitochondrial genomes, suggesting they may also be homologous, even though this is not evident from sequence comparisons. Only eight tRNA genes encoding seven distinct tRNAs are found in T. pyriformis mtDNA, formally confirming a long-standing proposal that most T. pyriformis mitochondrial tRNAs are nucleus-encoded species imported from the cytosol. Atypical features of mitochondrial gene organization and expression in T. pyriformis mtDNA include split and rearranged large subunit rRNA genes, as well as a split nad1 gene (encoding subunit 1 of NADH dehydrogenase of respiratory complex I) whose two segments are located on and transcribed from opposite strands, as is also the case in P. aurelia. Gene content and arrangement are very similar in T. pyriformis and P. aurelia mtDNAs, the two differing by a limited number of duplication, inversion and rearrangement events. Phylogenetic analyses using concatenated sequences of several mtDNA-encoded proteins provide high bootstrap support for the monophyly of alveolates (ciliates, dinoflagellates and apicomplexans) and slime molds.  相似文献   

18.
Lilly JW  Havey MJ 《Genetics》2001,159(1):317-328
Closely related cucurbit species possess eightfold differences in the sizes of their mitochondrial genomes. We cloned mitochondrial DNA (mtDNA) fragments showing strong hybridization signals to cucumber mtDNA and little or no signal to watermelon mtDNA. The cucumber mtDNA clones carried short (30-53 bp), repetitive DNA motifs that were often degenerate, overlapping, and showed no homology to any sequences currently in the databases. On the basis of dot-blot hybridizations, seven repetitive DNA motifs accounted for >13% (194 kb) of the cucumber mitochondrial genome, equaling >50% of the size of the Arabidopsis mitochondrial genome. Sequence analysis of 136 kb of cucumber mtDNA revealed only 11.2% with significant homology to previously characterized mitochondrial sequences, 2.4% to chloroplast DNA, and 15% to the seven repetitive DNA motifs. The remaining 71.4% of the sequence was unique to the cucumber mitochondrial genome. There was <4% sequence colinearity surrounding the watermelon and cucumber atp9 coding regions, and the much smaller watermelon mitochondrial genome possessed no significant amounts of cucumber repetitive DNAs. Our results demonstrate that the expanded cucumber mitochondrial genome is in part due to extensive duplication of short repetitive sequences, possibly by recombination and/or replication slippage.  相似文献   

19.
20.
In cultures of the mit? mutant strain Mb12 of Saccharomyces cerevisiae (carrying a mutation in the oli2 gene), 70% of the cells are petite mutants. More than 80% of the petites from Mb12 contain a particular mtDNA segment, denoted BB5, that is 880 bp long and carries a single MboI site. Thus, in cultures of Mb12, about 56% of the cells are petites containing the defective BB5 mtDNA genome, and only 30% are mit? cells containing parental Mb12 mtDNA. The BB5 mtDNA segment is also found in petites arising from the wild-type strain J69-1B (from which Mb12 was derived), but in this case mtDNA from only five out of 24 petites produced an 880 bp band after MboI digestion. Since J69-1B cultures carry a petite frequency of about 5%, approximately 1% of cells in J69-1B cultures contain the BB5 mtDNA segment. The difference between Mb12 and J69-1B cultures is reflected in the MboI digestion patterns of the respective mtDNAs. While Mb12 mtDNA contains a grossly superstoicheiometric 880 bp MboI fragment, the corresponding fragment in J69-1B mtDNA cannot be seen on stained gels, but can be readily visualized in Southern blots hybridized to a 32P-labelled DNA probe obtained from the 880 bp MboI fragment. The BB5 mtDNA segment was shown to contain the oril sequence (one of several very similar sequences in wild-type mtDNA thought to act as origins of replication of mtDNA) which confers the genetic property of very high suppressiveness on petites carrying this mtDNA. The efficient replication of BB5 mtDNA may contribute to its abundance in Mb12 cultures. Nevertheless, other factors must operate to influence the abundance of the BB5 mtDNA segment in cultures of different strains, the most important of which is likely to be the rate of excision of this mtDNA segment from the parental mtDNA genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号