首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate secretory protein of 94 amino acids (PSP94) is a small non-glycosylated, cysteine rich protein with a molecular mass of 10 kDa. It has also been referred to as beta-microseminoprotein (beta-MSP) and proteins homologous to it have been reported in a number of species. Comparison of the amino acid sequence of these proteins suggests that, it is a rapidly evolving protein. However, all the ten cysteine residues are well conserved in these homologues, indicating their possible role in maintaining the structure and function of these proteins. In the present study, PSP94 was purified from human seminal plasma and characterized further and it showed the presence of five disulfide bonds. Reduction of disulphide bonds of PSP94 led to significant changes in the secondary and tertiary structure of PSP94. CD of disulphide bond reduced PSP94 indicates an overall decrease in the beta sheet content from 79.8% to 46.4%. Tertiary structural changes as monitored by fluorescence quenching reveal that reduction of disulphide bonds of PSP94 followed by the modification of the free thiol groups leads to complete exposure of Trp32 and Trp92 and that one or more side chain carboxyl groups move closer to their indole side chains. Antibodies against native and modified PSP94 demonstrated that the changes following reduction of disulphide linkages are within the immunodominant region of the protein. Changes induced in the functional properties of PSP94, if any, by modification were investigated with respect to IgG binding as PSP94 has been reported to be similar to immunoglobulin binding factor purified from seminal plasma. A novel finding from this study is that both native PSP94 as well as modified protein have the ability to bind human IgG, suggesting the involvement of sequential epitopes of PSP94 in IgG binding.  相似文献   

2.
Members of the CAP protein superfamily are present in all kingdoms of life and have been implicated in many different processes, including pathogen defense, immune evasion, sperm maturation, and cancer progression. Most CAP proteins are secreted glycoproteins and share a unique conserved αβα sandwich fold. The precise mode of action of this class of proteins, however, has remained elusive. Saccharomyces cerevisiae has three CAP family members, termed pathogen related in yeast (Pry). We have previously shown that Pry1 and Pry2 export sterols in vivo and that they bind sterols in vitro. This sterol binding and export function of yeast Pry proteins is conserved in the mammalian CRISP proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with prostate secretory protein of 94 amino acids (PSP94), another major protein component in the seminal plasma. Here we examine whether the interaction between CRISP proteins and PSP94 affects the sterol binding function of CAP family members. We show that coexpression of PSP94 with CAP proteins in yeast abolished their sterol export function and the interaction between PSP94 and CAP proteins inhibits sterol binding in vitro. In addition, mutations that affect the formation of the PSP94–CRISP2 heteromeric complex restore sterol binding. Of interest, we found the interaction of PSP94 with CRISP2 is sensitive to high calcium concentrations. The observation that PSP94 modulates the sterol binding function of CRISP2 in a calcium-dependent manner has potential implications for the role of PSP94 and CRISP2 in prostate physiology and progression of prostate cancer.  相似文献   

3.
Prostate secretory protein of 94 amino acids (PSP94) is one of the major proteins present in human seminal plasma. We had earlier reported that PSP94 has the ability to bind to human IgG. The aims of the present study were to further delineate the PSP94–IgG interaction and to understand whether this could have any significance in sperm function. Direct binding of IgG fragments to PSP94 showed maximal binding with F(ab′)2 followed by Fab, while Fc displayed least binding in ELISA. Binding kinetics of PSP94–IgG interaction using surface plasmon resonance (SPR) revealed high-affinity binding of IgG to PSP94 with a dissociation constant (KD) of 8.8 × 1011 M. PSP94–IgG interaction was found to be through the Fab domains of IgG. Real-time interaction kinetics revealed association constants for binding of IgG, Fab, and F(ab′)2 towards PSP94 to be of the same order but with altered dissociation constants. IgG and its F(ab′)2 fragment once complexed to PSP94 demonstrated negligible dissociation, while dissociation rate of Fab fragment was 6.6 × 104. In silico molecular modeling of PSP94–IgG complex identified N- and C-terminal β-strands of PSP94 to be the most plausible region involved in IgG interaction. Immunofluorescence studies revealed that IgG bound to human spermatozoa predominantly in the tail region, which could be prevented when IgG was preincubated with PSP94. This study reports for the first time that IgG forms a high-affinity complex with PSP94 through its F(ab′)2 domain and reveals the ability of PSP94 to prevent binding of IgG to spermatozoa.  相似文献   

4.
PSP94 (prostate secretory protein of 94 amino acids) was regarded as a possible prostate cancer marker, however, it has been controversial. All prior studies were designed to test the free form in serum using antibodies to PSP94. Results presented here demonstrate that PSP94 exists in prostate cancer patients in two forms, free and bound, and that the majority is present as serum bound complexes. This result was demonstrated by using both native and SDS-PAGE analyses of serum proteins from prostate cancer patients. Chromatographic separation of serum total proteins by a molecular sieve column generated two peaks (peak I and II), which were reactive with rabbit antiserum to human PSP94 in Western blot experiments. Peak I was eluted before the IgG fraction at a molecular weight larger than 150 kDa, and peak II appeared after serum albumin ( approximately 67 kDa) was eluted. By using a biotinylated PSP94 as an indicator of the free form of PSP94, we demonstrate that peak I contains serum PSP94-bound complexes and peak II is likely the free form of serum PSP94. Since the molecular weight of serum PSP94-bound complexes is close to IgG during molecular sieve separation, serum PSP94 complexes were further purified through two rounds of protein A column separation, followed by DEAE-ion exchange column chromatography. In vitro dissociation tests of the purified PSP94-bound complexes showed that the binding of serum PSP94-complexes is probably via disulfide bonds and is chemically stable. The results presented here indicate that serum PSP94-bound complexes must be considered in evaluating the clinical utility of PSP94 as a prostate cancer marker.  相似文献   

5.
PSP94 (prostate secretory protein of 94 amino acids) was regarded as a possible prostate cancer marker, however, it has been controversial. All prior studies were designed to test the free form in serum using antibodies to PSP94. Results presented here demonstrate that PSP94 exists in prostate cancer patients in two forms, free and bound, and that the majority is present as serum bound complexes. This result was demonstrated by using both native and SDS‐PAGE analyses of serum proteins from prostate cancer patients. Chromatographic separation of serum total proteins by a molecular sieve column generated two peaks (peak I and II), which were reactive with rabbit antiserum to human PSP94 in Western blot experiments. Peak I was eluted before the IgG fraction at a molecular weight larger than 150 kDa, and peak II appeared after serum albumin (∼67 kDa) was eluted. By using a biotinylated PSP94 as an indicator of the free form of PSP94, we demonstrate that peak I contains serum PSP94‐bound complexes and peak II is likely the free form of serum PSP94. Since the molecular weight of serum PSP94‐bound complexes is close to IgG during molecular sieve separation, serum PSP94 complexes were further purified through two rounds of protein A column separation, followed by DEAE‐ion exchange column chromatography. In vitro dissociation tests of the purified PSP94‐bound complexes showed that the binding of serum PSP94‐complexes is probably via disulfide bonds and is chemically stable. The results presented here indicate that serum PSP94‐bound complexes must be considered in evaluating the clinical utility of PSP94 as a prostate cancer marker. J. Cell. Biochem. 76:71–83, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Several recent genome-wide association studies have linked the human MSMB gene, encoding prostate secretory protein of 94 residues (PSP94), with prostate cancer susceptibility. PSP94 is one of the most abundant proteins from prostatic secretions and a primary constituent of human semen. PSP94 suppresses tumor growth and metastasis, and its expression gradually decreases during progression of the prostate cancer. It is a rapidly evolving protein with homologues present in several species with 10 conserved cysteine residues. PSP94 homologues show high-affinity binding with different proteins from the cysteine-rich secretory protein family, some of which have been shown to be ion channel blockers. Here, we report the crystal structure of human PSP94 at 2.3 Å resolution. The structure shows that the amino and the carboxyl ends of the polypeptide chain are held in close proximity facing each other. A strong hydrogen bond between these ends, which are located respectively on the first and the last β-strands, leads to formation of an almost straight edge in PSP94 structure. Crystal structure shows that these edges from two PSP94 monomers associate in antiparallel fashion, leading to formation of a dimer. Our studies further show that dimers dissociate into monomers at acidic pH, possibly through distortion of the straight edge. Further, based on several observations, we propose that PSP94 binds to cysteine-rich secretory proteins and immunoglobulin G through the same edge, which is involved in the formation of PSP94 dimeric interface.  相似文献   

7.
PSP94 is a potential biomarker for evaluating patients with prostate carcinoma. We have systematically studied the epitope structure of PSP94 by using a polyclonal antibody against human PSP94. Results of peptide mapping and ELISA tests of dose response to rabbit antiserum against human PSP94 protein showed that only the N-terminal peptides (N30 and M23) are immunoreactive while all the synthetic peptides (C28, C10) located closer to the C-terminus are completely devoid of antigenic activity with the polyclonal antibody. These results were confirmed by analysis of reciprocal competitive binding of PSP94 polyclonal antibody by the N-terminal peptides (N30 and M23) v. either recombinant GST-PSP94 fusion protein, purified recombinant PSP94, or natural PSP94 protein. To further delineate the antigenic activity of the N- and C-termini, we have also expressed N- and C-terminal half of the whole PSP94 (each 47 peptides) using the E. coli GST expression system. The recombinant N47/C47 peptides were released by thrombin cleavage from the GST fusion protein and characterized by Western blotting experiments. Dose response of the recombinant GST-PSP-N47 and -C47 peptides to PSP94 polyclonal antibody showed differential binding activities. Competitive binding of these recombinant N47/C47 proteins against the GST-PSP94 protein demonstrates that the polyclonal antibody has a higher affinity for the N47 peptide than the C47 peptide. Based on the immunological studies of both synthetic peptides and recombinant PSP94- N/C terminal proteins, we propose an epitope structure of human PSP94 with an immno-dominant N-terminus and an immuno-recessive C-terminus. J. Cell. Biochem. 65:172–185. © 1997 Wiley-Liss, Inc.  相似文献   

8.
A simple three-step procedure for the purification of native prostate secretory protein (PSP94) from human seminal plasma is described. The steps are ammonium sulfate fractionation followed by a Macro-Prep S support (cation) flowthrough process and the final Macro-Prep high Q support (anion exchange) chromatography using two step-gradient elution. The benefits of this procedure lie in its simplicity, speed, and relatively inexpensive materials, thus providing advantages over the previously reported schemes. The purity of the product as judged by single band on SDS–polyacrylaminde gel electrophoresis was equivalent to that attained by analytical HPLC anion exchange procedure. Yields were in the range of 18–25 mg highly pure PSP94 per 50 ml of seminal plasma. The desalted, lyophilized, purified PSP94 sample was characterized by SDS–PAGE, Western blot, and N-terminal sequencing. All parameters tested confirm its identity. Preliminary data show that this procedure is suitable for a large-scale production. The direct quantitation of PSP94 by SDS–PAGE and densitometric image analysis at various purification steps for evaluating the recovery of PSP94 is described. The results obtained show that this is an efficient strategy for preparation of highly purified native PSP94.  相似文献   

9.
PSP94 has the potential to be a useful diagnostic marker and therapeutic agent in prostate cancer. Recently, different immunoassay systems for quantitative analysis of PSP94 in clinical samples have been developed, but the epitope structure of PSP94 protein has not been elucidated. In this study, we report an Escherichia coli expression system for recombinant GST-PSP94 fusion protein. GST-PSP94 contains antigenic determinants similar to natural PSP94 protein (determined both by Western blotting experiments and by ELISA) and can be used to study the structure of natural PSP94 antigen. Since GST-PSP94 was expressed in E. coli and purification involved a denaturing process, we propose that the epitope structure of PSP94 is linear and largely dependent on the primary amino acid sequence, rather than conformational structure. This hypothesis was supported by reciprocal competition in ELISA among natural, GST-PSP94 fusion protein, and purified recombinant PSP94 protein. The results demonstrate that the various forms of PSP94 can compete with each other in binding to rabbit PSP94 polyclonal antibody, although the natural PSP94 has a slightly higher affinity. When natural and recombinant PSP94 protein were denatured in vitro with urea and alkali, no effect on the binding to antibody was found. The epitope activity of natural PSP94 was also shown to be resistant to the treatment of detergent and reducing agent. The location of one of the linear epitopes recognized by the PSP94 antibody was determined to be in the N-terminus by using two synthetic peptides representing N- and C-terminal sequences. Competitive ELISA between the N-terminal peptide and PSP94 protein indicate that both natural and GST-PSP94 have similar immunoactive N-termini. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Human PSP94 (prostate secretory protein of 94 amino acids) is a major protein synthesized by the prostate gland and secreted in large quantities in seminal fluid. Previous studies have suggested a potential biomedical utility of PSP94 in applications such as diagnosis/prognosis and in treatment of human prostate cancer (PCa). This study was designed to produce a recombinant human PSP94 (rPSP94) to evaluate its clinical and functional role in PCa. We cloned PSP94 cDNA and successfully expressed an active recombinant protein in yeast using Pichia pastoris expression system. A simple purification strategy was established that incorporated combination of membrane ultrafiltration (Pellicon tangential-flow system) and anion exchange chromatography using DE52 resin. The method minimized the technical level of expertise for the production of high quality functional protein. The purified rPSP94 (>98% purity) showed a single band with SDS-PAGE analysis and a peak with a molecular mass (M(r)) of 11,495 kDa using MALDI TOF mass spectrometry (MS). The in vitro competitive binding assays indicated high functional similarity of the rPSP94 with that of its native counterpart. Furthermore, in vivo administration of rPSP94 caused a significant growth inhibition of hormone refractory Mat LyLu tumors in Dunning rat model. Taken together, our data provides evidence for high suitability of the purified rPSP94 for evaluation of its potential diagnostic and therapeutic role in PCa and as a valuable analytical reference standard for clinical studies.  相似文献   

11.
PSP94 has shown potential to be a serum biomarker for evaluating prostate cancer. Studies of the epitope structure is crucial for this endeavour. In this article, we have used 15 different monoclonal antibodies (MAb) to analyse the epitope structure of PSP94 and to compare with the results obtained from our previous work using polyclonal antibody and recombinant PSP94. Firstly, we determined the relative activities of the 15 MAb population by direct and competitive ELISA. The two predominant MAbs (MAb PSP-6 and -19) in 15 MAbs were selected for further studies of the epitope structure. By comparing the binding activities of recombinant GST-PSP94 and natural PSP94 with MAbs, and by comparing their affinity with MAbs in an in vitro denaturing experiment, PSP94 was shown to have a similar, prevalently linear epitope structure as we demonstrated by polyclonal antibody. Using recombinant GST fusion protein with PSP94 and with each half of the N- and C-terminal 47 amino acids (GST-PSP-N47/C47) in E. coli cells, the different epitopes recognized by 15 monoclonal antibodies were delineated and the polar distribution of the epitope structure of PSP94 was characterized. Results of direct ELISA of recombinant N47 and C47 and their competitive binding against natural PSP94 (competitive ELISA) showed that the N- and C-termini represent the immuno-dominant and immuno-recessive area separately. A majority of the monoclonal antibodies (12/15) showed preferential binding of the N-terminal sequence of the PSP94 protein. Using GST-PSP-N47 as a standard protein, an epitope map of the 15 monoclonal antibodies was obtained. The results of this study will help to define the clinical utility of PSP94. J. Cell. Biochem. 65:186–197. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The cDNA for PSP94, a cysteine-rich protein secreted by the human prostate, was unidirectionally digested with exonuclease III to generate deletion mutants with varying 5' ends. These were placed under the control of the lac promoter of the Bluescribe plasmid (pbs) to encode hybrid proteins containing the N terminus of beta-galactosidase (beta Gal) and various fragments of PSP94. Escherichia coli clones transformed by these constructs and expressing PSP94 epitopes were identified by radioimmunoassay of cellular and periplasmic extracts. One such clone (I-25) secreted most of its immunoreactive material into the periplasmic space. Nucleotide sequencing showed that a new consensus ribosome-binding site had been generated fortuitously, allowing expression of pre-PSP94 free of any beta Gal sequence. Periplasmic PSP94 is indistinguishable from the natural human protein, indicating correct processing and folding of this cysteine-rich protein in bacteria.  相似文献   

13.

Background

Human Prostate Secretory Protein of 94 amino acids (PSP94) has been shown to bind human CRISP-3 (cysteine-rich secretory protein 3) with very high affinity. CRISP-3 belongs to the CRISP family of proteins having a PR-1 (pathogenesis related protein 1) domain at its N-terminal and ion channel regulatory (ICR) domain at its C-terminal connected by a hinge region. Functional significance of this complex is not yet known.

Methods

In order to identify the residues and/or regions involved in PSP94–CRISP-3 interaction, site-directed mutagenesis was employed. Effect of the mutations on the interaction was studied by co-immunoprecipitation (Co-IP).

Results

For PSP94, amino acids Y3, F4, P56 and the C-terminal β-strand were found to be crucial for interacting with CRISP-3. A disulfide bond between the two domains of PSP94 (C37A–C73A) was also important for this interaction. In case of CRISP-3, the N-terminal domain alone could not maintain a strong interaction with PSP94 but it required presence of the hinge region and not the C-terminal domain. Apart from CRISP-3, CRISP-2 was also found to interact with human PSP94. Based on our findings the most likely model of PSP94–CRISP-3 complex has been proposed.

Conclusion

The terminal β-strands of PSP94 contact the first α-helix and the hinge region of CRISP-3.

General significance

Involvement of the hinge region of CRISPs in interaction with PSP94 may affect the domain movement of CRISPs essential for the ion-channel regulatory activity resulting in inhibition of this activity.  相似文献   

14.
Cysteine‐rich secretory proteins (CRISPs) are mainly found in the mammalian male reproductive tract and reported to be involved at different stages of fertilization. CRISPs have been shown to interact with prostate secretory protein of 94 amino acids (PSP94) from diverse sources, and the binding of these evolutionarily conserved proteins across species is proposed to be of functional significance. Of the three mammalian CRISPs, PSP94–CRISP3 interaction is well characterized, and specific binding sites have been identified; whereas, CRISP2 has been shown to interact with PSP94 in vitro. Interestingly, human CRISP3 and CRISP2 proteins are closely related showing 71.4% identity. In this study, we identified CRISP2 as a potential binding protein of PSP94 from human sperm. Further, we generated antisera capable of specifically detecting CRISP2 and not CRISP3. In this direction, specific peptides corresponding to the least conserved ion channel regulatory region were synthesized, and polyclonal antibodies were generated against the peptide in rabbits. The binding characteristics of the anti‐CRISP2 peptide antibody were evaluated using competitive ELISA. Immunoblotting experiments also confirmed that the peptide was able to generate antibodies capable of detecting the mature CRISP2 protein present in human sperm lysate. Furthermore, this anti‐CRISP2 peptide antibody also detected the presence of native CRISP2 on sperm.Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
在从成年人正常前列腺组织中获得人94个氨基酸的前列腺分泌蛋白(PSP94)cDNA基础上,利用PL表达系统,实现了人PSP94成熟肽N 末端带有19个外源氨基酸的融合蛋白在大肠杆菌中的表达。目的蛋白在细胞中主要以包涵体形式存在,表达量约占菌体总蛋白的30%,分子量约为16-5kD。表达产物在人前列腺癌细胞PC 3上活性分析表明,该融合蛋白能明显抑制前列腺癌细胞的生长。  相似文献   

16.
The FN-2 family of seminal plasma proteins represents the major protein fraction of bovine seminal plasma. These proteins also constitute the major seminal plasma proteins fraction in horse, goat and bison seminal plasma and are present in pig, rat, mouse, hamster and human seminal plasma. BSP-A1 and BSP-A2, the predominant proteins of the FN-2 family, are collectively termed as PDC-109. Fn-2 proteins play an important role in fertilization, including sperm capacitation and formation of oviductal sperm reservoirs. Significantly, BSP proteins were also shown to have negative effects in the context of sperm storage. No conclusive evidence for the presence of buffalo seminal plasma protein(s) similar to PDC-109 exists. Studies with buffalo seminal plasma indicated that isolation and identification of PDC-109-like protein(s) from buffalo seminal plasma by conventional methods might be difficult. Thus, antibodies raised against PDC-109 isolated, and purified from cattle seminal plasma, were used for investigating the presence of PDC-109-like protein(s) in buffalo seminal plasma. Buffalo seminal plasma proteins were resolved on SDS-PAGE, blotted to nitro cellulose membranes and probed for the presence of PDC-109-like protein(s) using the PDC-109 antisera raised in rabbits. A distinct immunoreactive band well below the 20-kDa regions indicated the presence of PDC-109-like protein(s) in buffalo seminal plasma.  相似文献   

17.
Prostate secretory protein (PSP94, 94 amino acids) is one of the most abundant proteins secreted from the prostate. Its biological role is unknown and still controversial, although it is assumed to have the potential to be a biomarker and a suppressor of prostate cancer. In order to establish an animal model to further elucidate its biological role, we expressed the mature form of rat PSP94 in Escherichia coli, using a glutathione S-transferase (GST) fusion expression vector; we generated a polyclonal rabbit antibody against the recombinant protein. The antibody specifically recognized recombinant rat PSP94 and cross-reacted only very weakly with its human homologue. Using the characterized anti-rat PSP94 antibody, we found that PSP94 was located primarily in rat prostate. Furthermore, PSP94 is present at different levels in different lobes of rat prostate, with significant levels detectable only in the lateral lobe (LP). In addition, the most abundant PSP94 expression was found in the prostate lobe secretions, and PSP94 levels in LP secretions were at least seven times higher than in secretions from the dorsal prostate (DP). The rat ventral prostate (VP) and other regions of the male accessory glands were found to be almost completely devoid of PSP94. Since most rat prostate dysplasia induced by steroid hormone treatment occurs only in dorsolateral prostate, prostate tissue-specific expression and the expression of PSP94 in dorsolateral, but not other, lobes of the prostate suggest a potential role in prostate targeting and prostate cancer development.  相似文献   

18.
Wu H  Zeng H  Lam R  Tempel W  Amaya MF  Xu C  Dombrovski L  Qiu W  Wang Y  Min J 《PloS one》2011,6(6):e18919

Background

The PWWP domain was first identified as a structural motif of 100–130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain ‘Royal Family’, which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently.

Methodology/Principal Findings

The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other ‘Royal Family’ members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3.

Conclusions

PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

Enhanced version

This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.  相似文献   

19.
Clostridium perfringens enterotoxin (CPE) is a cause of food poisoning and is considered a pore-forming toxin, which damages target cells by disrupting the selective permeability of the plasma membrane. However, the pore-forming mechanism and the structural characteristics of the pores are not well documented. Here, we present the structure of CPE determined by x-ray crystallography at 2.0 Å. The overall structure of CPE displays an elongated shape, composed of three distinct domains, I, II, and III. Domain I corresponds to the region that was formerly referred to as C-CPE, which is responsible for binding to the specific receptor claudin. Domains II and III comprise a characteristic module, which resembles those of β-pore-forming toxins such as aerolysin, C. perfringens ϵ-toxin, and Laetiporus sulfureus hemolytic pore-forming lectin. The module is mainly made up of β-strands, two of which span its entire length. Domain II and domain III have three short β-strands each, by which they are distinguished. In addition, domain II has an α-helix lying on the β-strands. The sequence of amino acids composing the α-helix and preceding β-strand demonstrates an alternating pattern of hydrophobic residues that is characteristic of transmembrane domains forming β-barrel-made pores. These structural features imply that CPE is a β-pore-forming toxin. We also hypothesize that the transmembrane domain is inserted into the membrane upon the buckling of the two long β-strands spanning the module, a mechanism analogous to that of the cholesterol-dependent cytolysins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号