首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.  相似文献   

2.
All Yersinia species target and bind to phagocytic cells, but uptake and destruction of bacteria are prevented by injection of anti-phagocytic Yop proteins into the host cell. Here we provide evidence that CD8+ T cells, which canonically eliminate intracellular pathogens, are important for restricting Yersinia, even though bacteria are primarily found in an extracellular locale during the course of disease. In a model of infection with attenuated Y. pseudotuberculosis, mice deficient for CD8+ T cells were more susceptible to infection than immunocompetent mice. Although exposure to attenuated Y. pseudotuberculosis generated TH1-type antibody responses and conferred protection against challenge with fully virulent bacteria, depletion of CD8+ T cells during challenge severely compromised protective immunity. Strikingly, mice lacking the T cell effector molecule perforin also succumbed to Y. pseudotuberculosis infection. Given that the function of perforin is to kill antigen-presenting cells, we reasoned that cell death marks bacteria-associated host cells for internalization by neighboring phagocytes, thus allowing ingestion and clearance of the attached bacteria. Supportive of this model, cytolytic T cell killing of Y. pseudotuberculosis–associated host cells results in engulfment by neighboring phagocytes of both bacteria and target cells, bypassing anti-phagocytosis. Our findings are consistent with a novel function for cell-mediated immune responses protecting against extracellular pathogens like Yersinia: perforin and CD8+ T cells are critical for hosts to overcome the anti-phagocytic action of Yops.  相似文献   

3.
Phagocytosis     
Phagocytosis is the process of recognition and engulfment of microorganisms or tissue debris that accumulate during infection, inflammation or wound repair. This ingestion, which is performed most efficiently by migrating, bone marrow-derived cells called ‘professional phagocytes’, is essential for successful host defense. Ingestion results when an invading microorganism is recognized by specific receptors on the phagocyte surface and requires multiple, successive interactions between the phagocyte and the target. Each of these interactions results in a signal transduction event, which is confined to the membrane and cytoskeleton around the ligated receptor and which is required for successful phagocytosis. Many molecules found at sites of inflammation or infection stimulate phagocytosis, so that efficient ingestion is confined to the site of infection or inflammation, which in turn limits the proinflammatory and tissue-destructive processes that accompany phagocytosis. This review summarizes current understanding of this critical component of host defense and of its regulation.  相似文献   

4.
The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.  相似文献   

5.
Tohyama Y  Yamamura H 《IUBMB life》2006,58(5-6):304-308
Phagocytosis is a central event in the innate immune responses that are triggered by the association between ligands on the surface of pathogens and receptors on the membrane of phagocytes. Particularly, complement-mediated phagocytosis is accomplished by specific recognition of bound complement components by the corresponding complement receptors on the phagocytes. The protein-tyrosine kinase, Syk, plays a central role in Fcgamma receptor-mediated phagocytosis in the adaptive immune system. From recent studies using a macrophage-like differentiated cell line and serum-treated zymosan, it was found that Syk also plays an essential role in complement-mediated phagocytosis in innate immunity. Serum-treated zymosan particles promptly attached to the cells and were subsequently engulfed via complement receptor3. During this process, Syk became tyrosine-phosphorylated and accumulated around the nascent phagosomes. The transfer of Syk-siRNA or dominant-negative Syk (DN-Syk) into macrophages resulted in impaired engulfment of pathogen. Collectively, Syk is required for the engulfment of pathogen in complement-mediated phagocytosis.  相似文献   

6.
Many receptors that are employed for the engulfment of apoptotic cells are also used for the recognition and phagocytosis of bacteria. Tyro3, Axl, and Mertk (TAM) are important in the phagocytosis of apoptotic cells by macrophages. Animals lacking these receptors are hypersensitive to bacterial products. In this report, we examine whether the TAM receptors are involved in the phagocytosis of bacteria. We found that macrophages lacking Mertk, Axl, Tyro3 or all three receptors were equally efficient in the phagocytosis of Gram-negative E. coli. Similarly, the phagocytosis of E. coli and Gram-positive S. aureus bioparticles by macrophages lacking TAM receptors was equal to wild-type. In addition, we found that Mertk did not play a role in killing of extracellular E. coli or the replication status of intracellular Francisella tularensis. Thus, while TAM receptors may regulate signal transduction to bacterial components, they are not essential for the phagocytosis and killing of bacteria.  相似文献   

7.
The role of neisserial Opa proteins in interactions with host cells   总被引:20,自引:0,他引:20  
Pathogenic Neisseria spp. possess a repertoire of phase-variable Opa proteins that mediate various pathogen–host cell interactions, including bacterial engulfment by epithelial cells and opsonin-independent phagocytosis by professional phagocytes. Recent studies have identified cellular targets recognized by defined Opa proteins and have begun to reveal host signalling events involved in mediating these Opa-dependent cellular processes.  相似文献   

8.
被吞噬细胞吞噬是多数凋亡细胞的命运.凋亡细胞表面膜磷脂酰丝氨酸的暴露、膜碳水化合物的改变及表面糖蛋白的重新分布和聚集导致被吞噬细胞识别与摄取.吞噬细胞的多种受体参与吞噬过程,有些受体参与栓系凋亡细胞,有些激发巨吞饮的摄取机制.吞噬的摄取过程因吞噬细胞和凋亡细胞的类型差异而不同.至少有7种线虫吞噬基因及其哺乳动物同源物组成两条部分重叠而又平行的摄取信息传导通路.吞噬基因的突变可以改变凋亡细胞的进程.吞噬功能的缺陷将影响机体正常的免疫应答.  相似文献   

9.
CYCLIC adenosine 3′,5′-monophosphate (cyclic AMP) has been established as a mediator of various hormonal effects in the appropriate target cells1. Adenyl cyclase converts adenosine triphosphate (ATP) to cyclic AMP and is widely distributed in the membrane of mammalian nucleated cells2–4. Since the early process of phagocytosis involves the physical and chemical contact of the cell membrane to the objects and subsequent formation of phagosome, we postulated that one of the earliest biochemical changes during phagocytosis might be an activation of adenyl cyclase and an alteration of concentrations of cyclic AMP in the phagocytes.  相似文献   

10.
Phagocytosis of apoptotic cells and the resolution of inflammation   总被引:10,自引:0,他引:10  
Clearance of apoptotic cells by phagocytic cells plays a significant role in the resolution of inflammation, protecting tissue from harmful exposure to the inflammatory and immunogenic contents of dying cells. Apoptosis induces cell surface changes that are important for recognition and engulfment of cells by phagocytes. These changes include alterations in surface sugars, externalization of phosphatidylserine and qualitative changes in the adhesion molecule ICAM-3. Several studies have contributed to clarify the role of the receptors on the surface of phagocytes that are involved in apoptotic cell clearance. The phagocytic removal of apoptotic cells does not elicit pro-inflammatory responses; in contrast, apoptotic cell engulfment appears to activate signals that suppress release of pro-inflammatory cytokines. Therefore, clearance of apoptotic leucocytes is implicated in the resolution of inflammation and mounting evidence suggests that defective clearance of apoptotic cells contributes to inflammatory and autoimmune diseases. Defining the ligands on apoptotic cells and the corresponding receptors on phagocytes with which they engage, is likely to lead to the development of novel anti-inflammatory pro-resolution drugs. In this article, we will review the recognition and signaling mechanisms involved in the phagocytosis of apoptotic cells as well as the role of endogenous compounds that play a relevant role in the modulation of inflammation. We will also discuss what is currently known about diseases that may reflect impaired phagocytosis and the consequences on inflammation and immune responses.  相似文献   

11.
Cryptococcus neoformans is an opportunistic yeast that kills over 625,000 people yearly through lethal meningitis. Host phagocytes serve as the first line of defense against this pathogen, but fungal engulfment and subsequent intracellular proliferation also correlate with poor patient outcome. Defining the interactions of this facultative intracellular pathogen with host phagocytes is key to understanding the latter’s opposing roles in infection and how they contribute to fungal latency, dissemination, and virulence. We used high-content imaging and a human monocytic cell line to screen 1,201 fungal mutants for strains with altered host interactions and identified multiple genes that influence fungal adherence and phagocytosis. One of these genes was PFA4, which encodes a protein S-acyl transferase (PAT), one of a family of DHHC domain-containing proteins that catalyzes lipid modification of proteins. Deletion of PFA4 caused dramatic defects in cryptococcal morphology, stress tolerance, and virulence. Bioorthogonal palmitoylome-profiling identified Pfa4-specific protein substrates involved in cell wall synthesis, signal transduction, and membrane trafficking responsible for these phenotypic alterations. We demonstrate that a single PAT is responsible for the modification of a subset of proteins that are critical in cryptococcal pathogenesis. Since several of these palmitoylated substrates are conserved in other pathogenic fungi, protein palmitoylation represents a potential avenue for new antifungal therapeutics.  相似文献   

12.
Candida albicans is a major life-threatening human fungal pathogen. Host defence against systemic Candida infection relies mainly on phagocytosis of fungal cells by cells of the innate immune system. In this study, we have employed video microscopy, coupled with sophisticated image analysis tools, to assess the contribution of distinct C. albicans cell wall components and yeast-hypha morphogenesis to specific stages of phagocytosis by macrophages. We show that macrophage migration towards C. albicans was dependent on the glycosylation status of the fungal cell wall, but not cell viability or morphogenic switching from yeast to hyphal forms. This was not a consequence of differences in maximal macrophage track velocity, but stems from a greater percentage of macrophages pursuing glycosylation deficient C. albicans during the first hour of the phagocytosis assay. The rate of engulfment of C. albicans attached to the macrophage surface was significantly delayed for glycosylation and yeast-locked morphogenetic mutant strains, but enhanced for non-viable cells. Hyphal cells were engulfed at a slower rate than yeast cells, especially those with hyphae in excess of 20 µm, but there was no correlation between hyphal length and the rate of engulfment below this threshold. We show that spatial orientation of the hypha and whether hyphal C. albicans attached to the macrophage via the yeast or hyphal end were also important determinants of the rate of engulfment. Breaking down the overall phagocytic process into its individual components revealed novel insights into what determines the speed and effectiveness of C. albicans phagocytosis by macrophages.  相似文献   

13.
The mechanism of phagocytic elimination of dying cells in Drosophila is poorly understood. This study was undertaken to examine the recognition and engulfment of apoptotic cells by Drosophila hemocytes/macrophages in vitro and in vivo. In the in vitro analysis, l(2)mbn cells (a cell line established from larval hemocytes of a tumorous Drosophila mutant) were used as phagocytes. When l(2)mbn cells were treated with the molting hormone 20-hydroxyecdysone, the cells acquired the ability to phagocytose apoptotic S2 cells, another Drosophila cell line. S2 cells undergoing cycloheximide-induced apoptosis exposed phosphatidylserine on their surface, but their engulfment by l(2)mbn cells did not seem to be mediated by phosphatidylserine. The level of Croquemort, a candidate phagocytosis receptor of Drosophila hemocytes/macrophages, increased in l(2)mbn cells after treatment with 20-hydroxyecdysone, whereas that of Draper, another candidate phagocytosis receptor, remained unchanged. However, apoptotic cell phagocytosis was reduced when the expression of Draper, but not of Croquemort, was inhibited by RNA interference in hormone-treated l(2)mbn cells. We next examined whether Draper is responsible for the phagocytosis of apoptotic cells in vivo using an assay for engulfment based on assessing DNA degradation of apoptotic cells in dICAD mutant embryos (which only occurred after ingestion by the phagocytes). RNA interference-mediated decrease in the level of Draper in embryos of mutant flies was accompanied by a decrease in the number of cells containing fragmented DNA. Furthermore, histochemical analyses of dispersed embryonic cells revealed that the level of phagocytosis of apoptotic cells by hemocytes/macrophages was reduced when Draper expression was inhibited. These results indicate that Drosophila hemocytes/macrophages execute Draper-mediated phagocytosis to eliminate apoptotic cells.  相似文献   

14.
The recognition and removal of apoptotic cells is critical to development, tissue homeostasis, and the resolution of inflammation. Many studies have shown that phagocytosis is regulated by signaling mechanisms that involve distinct ligand-receptor interactions that drive the engulfment of apoptotic cells. Studies from our laboratory have shown that the plasma protein beta-2-glycoprotein 1 (beta2GP1), a member of the short consensus repeat superfamily, binds phosphatidylserine-containing vesicles and apoptotic cells and promotes their bridging and subsequent engulfment by phagocytes. The phagocyte receptor for the protein/apoptotic cell complex, however, is unknown. Here we report that a member of the low density lipoprotein receptor-related protein family on phagocytes binds and facilitates engulfment of beta2GP1-phosphatidylserine and beta2GP1-apoptotic cell complexes. Using recombinant beta2GP1, we also show that beta2GP1-dependent uptake is mediated by bridging of the target cell to the phagocyte through the protein C- and N-terminal domains, respectively.  相似文献   

15.
Antimicrobial reactive oxygen and nitrogen species: concepts and controversies   总被引:12,自引:0,他引:12  
Phagocyte-derived reactive oxygen and nitrogen species are of crucial importance for host resistance to microbial pathogens. Decades of research have provided a detailed understanding of the regulation, generation and actions of these molecular mediators, as well as their roles in resisting infection. However, differences of opinion remain with regard to their host specificity, cell biology, sources and interactions with one another or with myeloperoxidase and granule proteases. More than a century after Metchnikoff first described phagocytosis, and more than four decades after the discovery of the burst of oxygen consumption that is associated with microbial killing, the seemingly elementary question of how phagocytes inhibit, kill and degrade microorganisms remains controversial. This review updates the reader on these concepts and the topical questions in the field.  相似文献   

16.
We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.  相似文献   

17.
Apoptotic cell death is an integral part of cell turnover in many tissues, and proper corpse clearance is vital to maintaining tissue homeostasis in all multicellular organisms. Even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. In Caenorhabditis elegans, two parallel and partly redundant conserved pathways act in cell corpse engulfment. The pathway for cytoskeletal rearrangement requires the small GTPase CED-10 Rac1 acting for an efficient surround of the dead cell. The CED-10 Rac pathway is also required for the proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. Parkin, the mammalian homolog of the C. elegans PDR-1, interacts with Rac1 in aged human brain and it is also implicated with actin dynamics and cytoskeletal rearrangements in Parkinsons''s disease, suggesting that it might act on engulfment. Our genetic and biochemical studies indicate that PDR-1 inhibits apoptotic cell engulfment and DTC migration by ubiquitylating CED-10 for degradation.  相似文献   

18.
We describe a new histochemical approach for visualization of phagocytic clearance in focal brain ischemia. The approach permits the study of elimination of dead cells in stroke by waste-management phagocytes of any cellular lineage. Although numerous cells of different origins that are capable of phagocytosis are present in ischemic brain, only part of them actively engulf and digest cell corpses. The selective visualization, quantification and analysis of such active phagocytic waste-management are helpful in assessing brain response to ischemia. Efficient cell death clearance is important for brain recovery from ischemic injury, as it opens the way for the subsequent regenerative processes. The failure to clean the corpses would result in a toxic reaction caused by non-degraded DNA and proteins. The described procedure uses fluorescent probes selectively ligated by a viral topoisomerase to characteristic DNA breaks produced in all phagocytes during engulfment and digestion of cells irreversibly damaged by ischemia. The method is a new tool for the investigation of brain reaction to ischemic injury.  相似文献   

19.
The apoptosis program of physiological cell death elicits a range of non-phlogistic homeostatic mechanisms—“recognition, response and removal”—that regulate the microenvironments of normal and diseased tissues via multiple modalities operating over short and long distances. The molecular mechanisms mediate intercellular signaling through direct contact with neighboring cells, release of soluble factors and production of membrane-delimited fragments (apoptotic bodies, blebs and microparticles) that allow for interaction with host cells over long distances. These processes effect the selective recruitment of mononuclear phagocytes and the specific activation of both phagocytic and non-phagocytic cells. While much evidence is available concerning the mechanisms underlying the recognition and responses of phagocytes that culminate in the engulfment and removal of apoptotic cell bodies, relatively little is yet known about the non-phagocytic cellular responses to the apoptosis program. These responses regulate inflammatory and immune cell activation as well as cell fate decisions of proliferation, differentiation and death. Here, we review current knowledge of these processes, considering especially how apoptotic cells condition the microenvironments of normal and malignant tissues. We also discuss how apoptotic cells that persist in the absence of phagocytic clearance exert inhibitory effects over their viable neighbors, paying particular attention to the specific case of cell cultures and highlighting how new cell-corpse-clearance devices—Dead-Cert® Nanoparticles—can significantly improve the efficacy of cell cultures through effective removal of non-viable cells in the absence of phagocytes in vitro.  相似文献   

20.
In vitro studies have shown that SCAR/WAVE activates the Arp2/3 complex to generate actin filaments, which in many cell types are organised into lamellipodia that are thought to have an important role in cell migration. Here we demonstrate that SCAR is utilised by Drosophila macrophages to drive their developmental and inflammatory migrations and that it is regulated via the Hem/Kette/Nap1-containing SCAR/WAVE complex. SCAR is also important in protecting against bacterial pathogens and in wound repair as SCAR mutant embryos succumb more readily to both sterile and infected wounds. However, in addition to driving the formation of lamellipodia in macrophages, SCAR is required cell autonomously for the correct processing of phagocytosed apoptotic corpses by these professional phagocytes. Removal of this phagocytic burden by preventing apoptosis rescues macrophage lamellipodia formation and partially restores motility. Our results show that efficient processing of phagosomes is critical for effective macrophage migration in vivo. These findings have important implications for the resolution of macrophages from chronic wounds and the behaviour of those associated with tumours, because phagocytosis of debris may serve to prolong the presence of these cells at these sites of pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号