首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishment of five human myeloma cell lines   总被引:3,自引:0,他引:3  
Summary Five human myeloma cell lines, KMM-1, KMS-5, KMS-11, KMS-12- PE, and KMS-12-BM, have been established at Kawasaki Medical School since 1980. As the KMS-12-PE and KMS-12-BM lines were obtained from the same patient, these five cell lines have been derived from four patients with multiple myeloma. The five myeloma cell lines are stably growing at present in RPMI 1640 medium supplemented with 10% fetal bovine serum. They can also grow in a defined culture medium without serum. That these cell lines were, human myeloma cells was confirmed by the following findings. Ultranstructually, all five cell lines showed features characteristic of plasma cells. KMM-1 and KMS-11 cells secreted lambda and kappa chains into the culture medium, respectively, but the other cell lines produced no immunoglobulins. KMM-1 expressed cytoplasmic lambda antigen, KMS-5 showed cytoplasmic delta, and KMS-11 expressed surface kappa, whereas KMS-12-PE and KMS-12-BM cells showed no surface or cytoplasmic immunoglobulins. Regarding reaction with a monoclonal plasma cell antibody (PCA-1), four of the five lines were positive, the exception being KMS-5. Another monoclonal antibody (CD38), which also recognizes plasma cells, reponded to KMM-1, KMS-12-PE, and KSM-12-BM. KMS-5 cells expressed acute lymphoblastic leukemia antigens (CALLA). These data suggest that such lines as KMM-1, KMS-11, KMS-12-PE, and KMS-12-BM represent later stages of B-cell differentiation, and that KMS-5 represents a relatively early stage of B-cell differentiation. All the cell lines lacked Epstein-Barr virus nuclear antigen, showed abnormal karyotypes of human origin, and differed from each other in the isozyme patterns examined. Only KMS-5 was tumorigenic when transplanted subcutaneously into nude mice.  相似文献   

2.
目的:研究蛋白酶体抑制剂硼替佐米诱导骨髓瘤RPMI8226、MMH929细胞衰老作用,并进一步探讨其作用机制。方法:硼替佐米0.1-100nmol/L处理骨髓瘤RPMI8226、MMH929细胞48、72h,MTT法检测细胞存活率、药物IC50值。选择药物IC50值1/10剂量处理骨髓瘤RPMI8226、MMH929细胞0、24、48H后检测衰老相关β-半乳糖苷酶染色率。流式细胞术检测细胞周期情况及凋亡率。Western-blot检测相关蛋白表达。结果:硼替佐米处理骨髓瘤细胞RPMI8226、MMH929后48小时IC50值:RPMI8226:19.05 nmol/L,MMH929:18.45nmol/L。以硼替佐米2 nmol/L处理骨髓瘤RPMI8226、MMH929细胞0、24、48H后发现β-半乳糖苷酶染色率、细胞G0/G1期比例明显上升与药物作用时间呈正相关,Western-blot检测细胞周期调控蛋白发现P53、PTEN蛋白无变化,P16蛋白与药物作用时间正相关。结论:硼替佐米通过增强P16蛋白表达诱导骨髓瘤细胞RPMI8226、H929衰老。  相似文献   

3.
T Ohtsuki  Y Yawata  M Namba 《Human cell》1989,2(3):297-303
Since 1980 five human myeloma cell lines, KMM-1, KMS-5, KMS-11, KMS-12-PE and KMS-12-BM, have been established in Kawasaki Medical School. Histologically, all the cell lines resembled plasma cells and were EBNA negative. KMM-1, KMS-11, KMS-12-PE and KMS-12-BM reacted with PCA-1, while KMM-1, KMS-12-PE and KMS-12-BM with CD38. KMM-1 and KMS-11 secreted immunoglobulins into culture medium. Karyologically, all the cell lines were abnormal. Only KMS-5 was tumorigenic when transplanted subcutaneously into nude mice.  相似文献   

4.
We evaluated the mechanism of recognition of myeloma cells by γδT cells. The expanded γδT cells killed RPMI8226 and U266 myeloma cells in a γδT-cell dose-dependent manner. Pretreatment of myeloma cells with zoledronic acid or mevastatin showed that γδT cells kill myeloma cells by recognizing the mevalonate metabolites. The expression level of intercellular cell adhesion molecule-1 (ICAM-1) on myeloma cells correlates with the cytotoxicity by γδT cells. Pretreatment of RPMI8226 and U266 with an anti-ICAM-1 monoclonal antibody inhibited their cytolysis. Moreover, AMO-1 myeloma cells transfected with of human ICAM-1 cDNA were susceptible to γδT cells compared to parental AMO-1 cells. In conclusion, γδT cells recognize the mevalonate metabolites and ICAM-1 on myeloma cells.  相似文献   

5.
摘要 目的:探讨精氨酸缺乏对硼替佐米(Bortezomib,BTZ) 治疗多发性骨髓瘤细胞的影响。方法:通过CCK8筛选BTZ对骨髓瘤细胞株(H929和RPMI 8226)治疗的最适药物浓度,比较在缺乏和富含精氨酸的两种培养基中的细胞增殖情况;通过使用PI染料标记细胞检测不同试验组细胞周期的分布,以及使用Annexin V/7AAD凋亡试剂盒检测BTZ对不同试验组细胞凋亡的影响。结果:BTZ降低了骨髓瘤细胞的存活率,并通过将细胞周期阻滞于G2/M、S期,抑制骨髓瘤细胞的增殖。缺乏精氨酸使细胞周期阻滞于S期,也抑制了骨髓瘤细胞的增殖。BTZ作用于缺乏精氨酸组的骨髓瘤细胞后,细胞凋亡百分比明显低于富含精氨酸组(H929细胞由约40%降至13.6%,RPMI8226凋亡百分比分别7.13%和19.27%)。结论:缺乏精氨酸和给予BTZ均阻滞细胞周期,抑制骨髓瘤细胞增殖;同时缺乏精氨酸降低了BTZ诱导骨髓瘤细胞的凋亡作用。  相似文献   

6.
BackgroundThe proteasome inhibitor bortezomib (BTZ) has significantly improved the survival of multiple myeloma (MM) patients. However, most MM patients still relapse and have drug resistance after BTZ treatment.MethodssiRNA transfection was performed to knock down BDNF and TrkB expression. ELISA, western blot, quantitative polymerase chain reaction, CCK-8 assay, and flow cytometry analysis were performed to analyze the functions of BDNF/TrkB signaling in MM cells.ResultsWe identified a cell-autonomous mechanism that promotes BTZ resistance in MM, prolongs their RPMI 8226/BTZ resistant cell survival and optimizes their proliferating function. Specifically, RPMI 8226/BTZ cells produced the brain derived neurotrophic factor (BDNF) and its receptor TrkB, which served as a survival factor in the RPMI 8226/BTZ resistant environment. BDNF/TrkB induced phosphorylation of STAT3 that upregulated the bone morphogenetic protein/retinoic acid inducible neural-specific 3 (BRINP3).ConclusionsBDNF/TrkB enhanced downstream pathway expression of phosphorylation STAT3 and BRINP3 molecules, promoting RPMI 8226/BTZ cell proliferation and survival.General significanceThese data place BDNF/TrkB at the top of a pSTAT3-BRINP3 survival pathway and link adaptability to BTZ resistant conditions in MM disease.  相似文献   

7.
As we showed earlier, side population (SP) cells are more resistant to low-LET radiation than the rest of mouse melanoma B16 cells (Matchuk et al., 2012). The goal of this study was elucidation of some mechanisms of radioresistance; therefore, we analyzed the SP and non-SP cell-cycle distribution, spontaneous and radiation-induced DNA double-strand breaks (the number of γ-H2AX foci), and intracellular NO concentration. The obtained results indicate that SP cells have a significantly lower number of double-strand DNA breaks after irradiation at a dose of 3 Gy than do non-SP cells (24.4 vs. 40.3, respectively, p < 0.05, Mann-Whitney U-test). The SP cells are more quiescent than are non-SP ones (the G1/G0-fraction is 85 vs. 39%, respectively, p < 0.01). Most non-SP cells are in the S or G2/M phases (61%), which are believed to be rather radiosensitive. Thus, the difference between the SP and non-SP cell radiosensitivity can be partly explained by peculiarities of the cell cycle distribution. The NO concentration is 1.5 times higher in the SP than in the non-SP cells (p < 0.05); since it is known that NO inhibits apoptosis, being one of the mechanisms of genetic stability maintenance, that there is a higher number of the spontaneous double-strand DNA breaks in the SP cells is not surprising (p < 0.05). The above-given results to a certain extent explain the higher resistance of the SP cells to low-LET radiation in comparison with the non-SP cells. Further study of this problem may become the basis for development of tools to target SP cells and, eventually, for more effective treatment of oncological diseases.  相似文献   

8.
Peripheral blood lymphocytes from normal human donors were cocultivated with cells from two established human multiple myeloma cell lines, RPMI 8226 and K-737, and with lymphoblastoid cells from a third B cell line, RAMM. After a comparison of three methods of lymphocyte sensitization, a 6-day incubation protocol with equal numbers of normal lymphocytes and mitomycin C-treated tumor cells was selected. Cells from the RPMI 8226 myeloma line stimulated the differentiation of lymphocytes into cytotoxic effector cells as measured by 51Cr release from labeled target cells. The RPMI 8226-sensitized lymphocytes were cytotoxic for myeloma cells (RPMI 8226 and K-737) and for lymphoblastoid cells (RAMM) but not for cells from human lung tumor lines (A549, A427, MB9812), a breast carcinoma line (ALAB), a normal diploid fibroblast line (HSBP), or normal lymphocytes.  相似文献   

9.
The bone marrow microenvironment plays an essential role in multiple myeloma (MM) progression. We aimed to explore the alterations of levels of long noncoding RNAs and messenger RNAs (mRNAs), derived from exosomes in peripheral blood, in resistance to bortezomib (Btz) of MM patients. Peripheral blood samples were collected from five Btz-resistant and five Btz-sensitive MM patients. Exosomes in patients' peripheral blood were enriched, and the profiles of long noncoding RNAs (lncRNAs) and mRNAs in exosomes were determined using deep sequencing. Bioinformatics analysis was performed to explore biological function. MTS was employed to determine the viability of Roswell Park Memorial Institute (RPMI) 8226 and LP-1 cells incubated with exosomes derived from Btz-resistant patients. Quantitative polymerase chain reaction (qPCR) was used to evaluate the levels of exosomal FFAR1, SP9, HIST1H2BG, and ITIH2. Incubation with Btz-resistant patient-derived exosomes significantly increased the viability of Btz-treated RPMI 8226 and LP-1 cells in a dose-dependent manner. We identified 482 lncRNAs and 2099 mRNAs deregulated in exosomes of the Btz-resistance group; and 78 mRNAs were enriched in DR-related pathways, including mammalian target of rapamycin, platinum drug resistance, and the cAMP and phosphoinositide 3-kinase–Akt signaling pathways. qPCR results verified the increases in FFAR1 and SP9 and decreases in HIST1H2BG and ITIH2 in Btz-resistant patient-derived exosomes. Moreover, exosomal FFAR1 and SP9 exhibited potential as independent prognostic indicators of survival of MM patients. Our study reveals significant dysregulation of exosomal RNA components in the Btz-resistant group of MM patients as well as several mRNAs that may be used as biomarkers of prognosis of MM patients that are resistant to Btz.  相似文献   

10.
Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2), KG-1 (ABCB1) and HepG2 cells (ABCB1 and ABCG2). Interestingly, although side population (SP) cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.  相似文献   

11.
12.
Tumoral plasma cells has retained stemness features and in particular, a polycomb-silenced gene expression signature. Therefore, epigenetic therapy could be a mean to fight for multiple myeloma (MM), still an incurable pathology. Deazaneplanocin A (DZNep), a S-adenosyl-L-homocysteine hydrolase inhibitor, targets enhancer of zest homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2) and is capable to induce the death of cancer cells. We show here that, in some MM cell lines, DZNep induced both caspase-dependent and -independent apoptosis. However, the induction of cell death was not mediated through its effect on EZH2 and the trimethylation on lysine 27 of histone H3 (H3K27me3). DZNep likely acted through non-epigenetic mechanisms in myeloma cells. In vivo, in xenograft models, and in vitro DZNep showed potent antimyeloma activity alone or in combination with bortezomib. These preclinical data let us to envisage new therapeutic strategies for myeloma.  相似文献   

13.
BackgroundXanthohumol (XN, a hop-derived prenylflavonoid) was found to exert anticancer effects on various cancer types. However, the mechanisms by which XN affects the survival of multiple myeloma cells (MM) are little known. Therefore, our study was undertaken to address this issue.MethodsAnti-proliferative activity of XN towards two phenotypically distinct MM cell lines U266 and RPMI8226 was evaluated with the MTT and BrdU assays. Cytotoxicity was determined with the LDH method, whereas apoptosis was assessed by flow cytometry and fluorescence staining. The expression of cell cycle- and apoptosis-related proteins and the activation status of signaling pathways were estimated by immunoblotting and ELISA assays.ResultsXN reduced the viability of RPMI8226 cells more potently than in U266 cells. It blocked cell cycle progression through downregulation of cyclin D1 and increased p21 expression. The marked apoptosis induction in the XN-treated RPMI8226 cells was related to initiation of mitochondrial and extrinsic pathways, as indicated by the altered p53, Bax, and Bcl-2 protein expression, cleavage of procaspase 8 and 9, and elevated caspase-3 activity. The apoptotic process was probably mediated via ROS overproduction and MAPK (ERK and JNK) activation as N-acetylcysteine, or specific inhibitors of these kinases prevented the XN-induced caspase-3 activity and, hence, apoptosis. Moreover, XN decreased sIL-6R and VEGF production in the studied cells.ConclusionsERK and JNK signaling pathways are involved in XN-induced cytotoxicity against MM cells.General Significance: The advanced understanding of the molecular mechanisms of XN action can be useful in developing therapeutic strategies to treat multiple myeloma.  相似文献   

14.
The influence of oxygen tension on the side population (SP) fraction sorted from ATDC5 chondroprogenitor cells was investigated. ATDC5 cells cultured in normoxia (20%) or hypoxia (1% oxygen) were compared. The SP fraction was significantly higher in the cells cultured in hypoxia. The gene expression of 3 ABC transporters, abcb1a/b (mdr1a/b) and abcg2 (bcrp1) was quantified by RT-PCR. SP cells were characterized by the higher expression of abcb1a. The expression levels of abcb1b and abcg2 were higher than abcb1a. However, there was no significant difference between SP and non-SP fractions in the expression of abcb1b and abcg2. The telomeric repeat amplification protocol assay showed that SP cells tended to show lower telomerase activity than non-SP cells. Chondrogenic properties of ATDC5 cells derived from SP or non-SP were assessed by micromass culture. There were not significant differences between SP and non-SP derived cells in Alcian blue staining and sox9, Aggrecan, Col2a1 and SZP mRNA expression. The results demonstrate that the SP fraction was stimulated by hypoxia and chondrogenic properties of SP and non-SP fraction of ATDC5 cells were similar.  相似文献   

15.
The immunomodulatory drug lenalidomide (Len) has drawn attention to potentiate antibody-dependent cellular cytotoxicity (ADCC)-mediated immunotherapies. We developed the defucosylated version (YB-AHM) of humanized monoclonal antibody against HM1.24 (CD317) overexpressed in multiple myeloma (MM) cells. In this study, we evaluated ADCC by YB-AHM and Len in combination against MM cells and their progenitors. YB-AHM was able to selectively kill via ADCC MM cells in bone marrow samples from patients with MM with low effector/target ratios, which was further enhanced by treatment with Len. Interestingly, Len also up-regulated HM1.24 expression on MM cells in an effector-dependent manner. HM1.24 was found to be highly expressed in a drug-resistant clonogenic “side population” in MM cells; and this combinatory treatment successfully reduced SP fractions in RPMI 8226 and KMS-11 cells in the presence of effector cells, and suppressed a clonogenic potential of MM cells in colony-forming assays. Collectively, the present study suggests that YB-AHM and Len in combination may become an effective therapeutic strategy in MM, warranting further study to target drug-resistant MM clonogenic cells.  相似文献   

16.
17.
Over-expression of σ receptors by many tumor cell lines makes ligands for these receptors attractive as potential chemotherapeutic drugs. Enantiomeric piperazines (S)-4 and (R)-4 were prepared as potential σ-receptor ligands in a chiral pool synthesis starting from (S)- and (R)-aspartate. Both compounds showed high affinities for the σ1 and σ2 receptors. In the human multiple myeloma cell line RPMI 8226, a line expressing high levels of σ receptors, both compounds inhibited cell proliferation with IC50 values in the low μM range. No chiral differentiation between either the σ receptor binding affinity or the cytotoxicity of the two enantiomers was observed. Both compounds induced apoptosis, which was evidenced by nuclear condensation, binding of annexin-V to phosphatidylserine in the outer leaf of the cell membrane, cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1) and caspase-8 as well as the expression of bcl2 family members bax, bad and bid. However, apoptosis appeared to be caspase independent. Increased levels of the phosphorylated form of the microtubule associated protein light chain 3-II (LC3-II), an autophagosome marker, gave evidence that both compounds induced autophagy. However, further data (e.g., treatment with wortmannin) indicate that autophagy is incomplete and not cytoprotective. Lipid peroxidation (LPO) was observed in RPMI 8226 cells treated with the two compounds, and the lipid antioxidant α-tocopherol attenuated LPO. Interestingly, α-tocopherol reduced significantly both apoptosis and autophagy induced by the compounds. These results provide evidence that, by initiating LPO and changes in mitochondrial membrane potential, both compounds induce apoptosis and autophagy in RPMI 8226 cells.  相似文献   

18.

Background

The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods

Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results

RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC50 of ~ 116 μM, and this uptake was reduced in the presence of extracellular Ca2+ and Mg2+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions

P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General significance

RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.  相似文献   

19.
Experimental data on resistance mechanisms of multiple myeloma (MM) to ixazomib (IXA), a second-generation proteasome inhibitor (PI), are currently lacking. We generated MM cell lines with a 10-fold higher resistance to IXA as their sensitive counterparts, and observed cross-resistance towards the PIs carfilzomib (CFZ) and bortezomib (BTZ). Analyses of the IXA-binding proteasome subunits PSMB5 and PSMB1 show increased PSMB5 expression and activity in all IXA-resistant MM cells, and upregulated PSMB1 expression in IXA-resistant AMO1 cells. In addition, sequence analysis of PSMB5 revealed a p.Thr21Ala mutation in IXA-resistant MM1.S cells, and a p.Ala50Val mutation in IXA-resistant L363 cells, whereas IXA-resistant AMO1 cells lack PSMB5 mutations. IXA-resistant cells retain their sensitivity to therapeutic agents that mediate cytotoxic effects via induction of proteotoxic stress. Induction of ER stress and apoptosis by the p97 inhibitor CB-5083 was strongly enhanced in combination with the PI3Kα inhibitor BYL-719 or the HDAC inhibitor panobinostat suggesting potential therapeutic strategies to circumvent IXA resistance in MM. Taken together, our newly established IXA-resistant cell lines provide first insights into resistance mechanisms and overcoming treatment strategies, and represent suitable models to further study IXA resistance in MM.  相似文献   

20.
Side Population (SP) cells, a subset of Hoechst-low cells, are enriched with stem cells. Originally, SP cells were isolated from bone marrow but recently have been found in various solid tumors and cancer cell lines that are clonogenic in vitro and tumorigenic in vivo. In this study, SP cells from lymph node metastatic head and neck squamous cell carcinoma (HNSCC) cell lines were examined using flow cytometry and Hoechst 3342 efflux assay. We found that highly metastatic HNSCC cell lines M3a2 and M4e contained more SP cells compared to the low metastatic parental HNSCC cell line 686LN. SP cells in HNSCC were highly invasive in vitro and tumorigenic in vivo compared to non-SP cells. Furthermore, SP cells highly expressed ABCG2 and were chemoresistant to Bortezomib and etoposide. Importantly, we found that SP cells in HNSCC had abnormal activation of Wnt/β-catenin signaling as compared to non-SP cells. Together, these findings indicate that SP cells might be a major driving force of head and neck tumor formation and metastasis. The Wnt/β-catenin signaling pathway may be an important target for eliminating cancer stem cells in HNSCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号