首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Advances in next-generation sequencing offer high-throughput and cost-effective genotyping alternatives, including genotyping-by-sequencing (GBS). Results have shown that this methodology is efficient for genotyping a variety of species, including those with complex genomes. To assess the utility of GBS in cultivated hexaploid oat (Avena sativa L.), seven bi-parental mapping populations and diverse inbred lines from breeding programs around the world were studied. We examined technical factors that influence GBS SNP calls, established a workflow that combines two bioinformatics pipelines for GBS SNP calling, and provided a nomenclature for oat GBS loci. The high-throughput GBS system enabled us to place 45,117 loci on an oat consensus map, thus establishing a positional reference for further genomic studies. Using the diversity lines, we estimated that a minimum density of one marker per 2 to 2.8 cM would be required for genome-wide association studies (GWAS), and GBS markers met this density requirement in most chromosome regions. We also demonstrated the utility of GBS in additional diagnostic applications related to oat breeding. We conclude that GBS is a powerful and useful approach, which will have many additional applications in oat breeding and genomic studies.  相似文献   

2.
3.
4.
Molecular genetic marker development in perennial ryegrass has largely been dependent on anonymous sequence variation. The availability of a large-scale EST resource permits the development of functionally-associated genetic markers based on SNP variation in candidate genes. Genic SNP loci and associated haplotypes are suitable for implementation in molecular breeding of outbreeding forage species. Strategies for in vitro SNP discovery through amplicon cloning and sequencing have been designed and implemented. Putative SNPs were identified within and between the parents of the F1(NA6 × AU6) genetic mapping family and were validated among progeny individuals. Proof-of-concept for the process was obtained using the drought tolerance-associated LpASRa2 gene. SNP haplotype structures were determined and correlated with predicted amino acid changes. Gene-length LD was evaluated across diverse germplasm collections. A survey of SNP variation across 100 candidate genes revealed a high frequency of SNP incidence (c. 1 per 54 bp), with similar proportions in exons and introns. A proportion (c. 50%) of the validated genic SNPs were assigned to the F1(NA6 × AU6) genetic map, showing high levels of coincidence with previously mapped RFLP loci. The perennial ryegrass SNP resource will enable genetic map integration, detailed LD studies and selection of superior allele content during varietal development.  相似文献   

5.
Advancements in next-generation sequencing technology have enabled whole genome re-sequencing in many species providing unprecedented discovery and characterization of molecular polymorphisms. There are limitations, however, to next-generation sequencing approaches for species with large complex genomes such as barley and wheat. Genotyping-by-sequencing (GBS) has been developed as a tool for association studies and genomics-assisted breeding in a range of species including those with complex genomes. GBS uses restriction enzymes for targeted complexity reduction followed by multiplex sequencing to produce high-quality polymorphism data at a relatively low per sample cost. Here we present a GBS approach for species that currently lack a reference genome sequence. We developed a novel two-enzyme GBS protocol and genotyped bi-parental barley and wheat populations to develop a genetically anchored reference map of identified SNPs and tags. We were able to map over 34,000 SNPs and 240,000 tags onto the Oregon Wolfe Barley reference map, and 20,000 SNPs and 367,000 tags on the Synthetic W9784 × Opata85 (SynOpDH) wheat reference map. To further evaluate GBS in wheat, we also constructed a de novo genetic map using only SNP markers from the GBS data. The GBS approach presented here provides a powerful method of developing high-density markers in species without a sequenced genome while providing valuable tools for anchoring and ordering physical maps and whole-genome shotgun sequence. Development of the sequenced reference genome(s) will in turn increase the utility of GBS data enabling physical mapping of genes and haplotype imputation of missing data. Finally, as a result of low per-sample costs, GBS will have broad application in genomics-assisted plant breeding programs.  相似文献   

6.
The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.  相似文献   

7.
Genotyping by sequencing (GBS) is the latest application of next-generation sequencing protocols for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. Unlike other high-density genotyping technologies which have mainly been applied to general interest “reference” genomes, the low cost of GBS makes it an attractive means of saturating mapping and breeding populations with a high density of SNP markers. One barrier to the widespread use of GBS has been the difficulty of the bioinformatics analysis as the approach is accompanied by a high number of erroneous SNP calls which are not easily diagnosed or corrected. In this study, we use a 384-plex GBS protocol to add 30,984 markers to an indica (IR64) × japonica (Azucena) mapping population consisting of 176 recombinant inbred lines of rice (Oryza sativa) and we release our imputation and error correction pipeline to address initial GBS data sparsity and error, and streamline the process of adding SNPs to RIL populations. Using the final imputed and corrected dataset of 30,984 markers, we were able to map recombination hot and cold spots and regions of segregation distortion across the genome with a high degree of accuracy, thus identifying regions of the genome containing putative sterility loci. We mapped QTL for leaf width and aluminum tolerance, and were able to identify additional QTL for both phenotypes when using the full set of 30,984 SNPs that were not identified using a subset of only 1,464 SNPs, including a previously unreported QTL for aluminum tolerance located directly within a recombination hotspot on chromosome 1. These results suggest that adding a high density of SNP markers to a mapping or breeding population through GBS has a great value for numerous applications in rice breeding and genetics research.  相似文献   

8.
Chiasmata and the breeding system in wild populations of diploid wheats   总被引:4,自引:1,他引:3  
Seven populations of the selfer Triticum longissimum (= Aegilops longissima) and five populations of the closely related outbreeder T. speltoides (= Ae. speltoides) were scored for chiasma frequencies in pollen mother cells. The populations of the selfer have significantly higher frequencies of chiasmata than the outbreeding populations. This difference becomes even clearer when interstitial chiasmata alone are compared. It is argued that an optimal degree of effective recombination is achieved by the balance between outbreeding and interstitial chiasmata. — There are wider differences between the selfing populations than between the outbreeding populations, but the differences between families (within populations) are small in both species. Variation between plants within families seems to be lower in the selfer, but nevertheless high enough to be inexplicable on the basis of selfing alone. — Small populations subject to hardship conditions show a higher frequency of chiasmata than others.  相似文献   

9.
Despite the increasing opportunity to collect large‐scale data sets for population genomic analyses, the use of high‐throughput sequencing to study populations of polyploids has seen little application. This is due in large part to problems associated with determining allele copy number in the genotypes of polyploid individuals (allelic dosage uncertainty–ADU), which complicates the calculation of important quantities such as allele frequencies. Here, we describe a statistical model to estimate biallelic SNP frequencies in a population of autopolyploids using high‐throughput sequencing data in the form of read counts. We bridge the gap from data collection (using restriction enzyme based techniques [e.g. GBS, RADseq]) to allele frequency estimation in a unified inferential framework using a hierarchical Bayesian model to sum over genotype uncertainty. Simulated data sets were generated under various conditions for tetraploid, hexaploid and octoploid populations to evaluate the model's performance and to help guide the collection of empirical data. We also provide an implementation of our model in the R package polyfreqs and demonstrate its use with two example analyses that investigate (i) levels of expected and observed heterozygosity and (ii) model adequacy. Our simulations show that the number of individuals sampled from a population has a greater impact on estimation error than sequencing coverage. The example analyses also show that our model and software can be used to make inferences beyond the estimation of allele frequencies for autopolyploids by providing assessments of model adequacy and estimates of heterozygosity.  相似文献   

10.
Mouse genetic resources include inbred strains, recombinant inbred lines, chromosome substitution strains, heterogeneous stocks, and the Collaborative Cross (CC). These resources were generated through various breeding designs that potentially produce different genetic architectures, including the level of diversity represented, the spatial distribution of the variation, and the allele frequencies within the resource. By combining sequencing data for 16 inbred strains and the recorded history of related strains, the architecture of genetic variation in mouse resources was determined. The most commonly used resources harbor only a fraction of the genetic diversity of Mus musculus, which is not uniformly distributed thus resulting in many blind spots. Only resources that include wild-derived inbred strains from subspecies other than M. m. domesticus have no blind spots and a uniform distribution of the variation. Unlike other resources that are primarily suited for gene discovery, the CC is the only resource that can support genome-wide network analysis, which is the foundation of systems genetics. The CC captures significantly more genetic diversity with no blind spots and has a more uniform distribution of the variation than all other resources. Furthermore, the distribution of allele frequencies in the CC resembles that seen in natural populations like humans in which many variants are found at low frequencies and only a minority of variants are common. We conclude that the CC represents a dramatic improvement over existing genetic resources for mammalian systems biology applications.  相似文献   

11.
Habitat fragmentation and reduction of population size have been found to negatively affect plant reproduction in 'new rare' species that were formerly common. This has been attributed primarily to effects of increased inbreeding but also to pollen limitation. In contrast, little is known about the reproduction of 'old rare' species that are naturally restricted to small and isolated habitats and thus may have developed strategies to cope with long-term isolation and small population size. Here we study the effects of pollen source and quantity on reproduction of the 'old rare' bumblebee-pollinated herb, Astragalus exscapus. In two populations of this species, we tested for pollen autodeposition, inbreeding depression and outbreeding depression. Caged plants were left unpollinated or were pollinated with pollen from the same plant, from the same population or from a distant population (50 km). Additionally, we tested for pollen limitation by pollen supplementation in four populations of different size and density. In the absence of pollinators, plants did not produce seed whereas self-pollinated plants did. This indicates a self-compatible breeding system dependent on insect pollination. Both self-pollination and, in one of the two populations, cross-pollination with pollen from plants from the distant population resulted in a lower number of seeds per flower than cross-pollination with pollen from plants from the resident population, indicating inbreeding and outbreeding depression. Pollen addition enhanced fruit set and number of seeds per flower in three of the four populations, indicating pollen limitation. The degree of pollen limitation was lowest in the smallest but densest population. Our results suggest that, similar to 'new rare' plant species, also 'old rare' species may be at risk of inbreeding depression and pollen limitation.  相似文献   

12.
The genetic variation of seven enzymes for a total of nine loci was investigated in three species of terrestrial orchids of the genusCephalanthera:C. longifolia, C. rubra, andC. damasonium. These species are characterized by presenting different breeding types: outbreeding , outbreeding with facultative vegetative reproduction, and inbreeding, respectively. Electrophoretic evidence points to a difference in the behaviour of each of the three species which seems strictly related to the breeding type. On the basis of our resultsC. longifolia behaves as a normal outbreeder, whileC. rubra presents the influence of vegetative reproduction in some populations and not in others.C. damasonium shows a total lack of both among and within populations genetic variation, which is most probably due to the autogamic breeding type.  相似文献   

13.
Plant genetic diversity has been mainly investigated with neutral markers, but large-scale DNA sequencing projects now enable the identification and analysis of different classes of genetic polymorphisms, such as non-synonymous single nucleotide polymorphisms (nsSNPs) in protein coding sequences. Using the SIFT and MAPP programs to predict whether nsSNPs are tolerated (i.e., effectively neutral) or deleterious for protein function, genome-wide nsSNP data from Arabidopsis thaliana and rice were analyzed. In both species, about 20% of polymorphic sites with nsSNPs were classified as deleterious; they segregate at lower allele frequencies than tolerated nsSNPs due to purifying selection. Furthermore, A. thaliana accessions from marginal populations show a higher relative proportion of deleterious nsSNPs, which likely reflects differential selection or demographic effects in subpopulations. To evaluate the sensitivity of predictions, genes from model and crop plants with known functional effects of nsSNPs were inferred with the algorithms. The programs predicted about 70% of nsSNPs correctly as tolerated or deleterious, i.e., as having a functional effect. Forward-in-time simulations of bottleneck and domestication models indicated a high power to detect demographic effects on nsSNP frequencies in sufficiently large datasets. The results indicate that nsSNPs are useful markers for analyzing genetic diversity in plant genetic resources and breeding populations to infer natural/artificial selection and genetic drift.  相似文献   

14.
微卫星标记在种群生物学研究中的应用   总被引:10,自引:0,他引:10       下载免费PDF全文
微卫星是以几个碱基 (一般为 1~ 6个 )为重复单位组成的简单的串联重复序列 ,具有丰度高、多态性高、共显性标记、选择中性、可自动检测等优点。本文着重介绍了微卫星在种群生物学研究中的应用。微卫星位点可以提供具高分辨率的遗传信息 ,这一特点使微卫星既适合于个体水平上的研究 ,又适合于种群水平上的研究。在个体水平上包括个体识别、交配系统和亲本分析、基因流等研究。微卫星是常用的个体识别手段 ,但在克隆植物遗传结构研究方面的应用还很有限 ;微卫星提高了交配系统和亲本分析、基因流等研究的准确性。在种群水平上微卫星可用于遗传结构、有效种群大小、种群的系统发育重建等研究。微卫星在很多物种 (包括珍稀物种 )的遗传结构研究中得到应用 ;利用微卫星标记确定有效种群大小、检测有效种群大小的波动可以促使我们正确理解种群遗传结构动态和种群进化过程 ;微卫星在种群的系统发育重建研究方面有很大的应用潜力。然而微卫星并不是研究所有问题的唯一选择。文中还讨论了在实际工作中应如何正确利用分子标记等问题  相似文献   

15.
Recently developed plant genomics approaches (LD mapping and genome-wide selection) require many molecular markers distributed throughout the plant genome. As a result, the availability of an increasing number of markers is essential for maintaining highly efficient and accurate plant breeding programs. In this study, we identified SNP loci in sunflower using a genotyping by sequencing (GBS) approach in an intraspecific F2 mapping population. A total of 271,445,770 reads were generated by the Genome Analyzer II next-generation sequencing platform and 29.2 % of the reads were aligned to unique locations in the genome. A total of 46,278 SNP loci were identified and 7646 SNP loci were validated in an F2 population. In addition, a SNP-based linkage map was constructed. This is the first report of SNP discovery in sunflower by GBS. The SNP markers and SNP-based linkage map will be valuable molecular genetics tools for sunflower breeding.  相似文献   

16.
Water-soluble carbohydrates (WSC) are an important factor determining the nutritional value of grass forage and development of genetic markers for selection of WSC traits in perennial ryegrass would benefit future breeding programmes. Quantitative trait loci (QTLs) for WSC have been published for an F2 ryegrass mapping family. Markers showing significant associations with these QTLs were used to design narrow-based populations with homozygosity for target QTLs. Founders were selected from within the mapping family. The divergent populations produced were analysed for WSC content in the glasshouse and the field. There was evidence of complex interactions between WSC content and other factors and traits, including the scale of assessment, time/degree of sward establishment and other forage quality parameters. Differences between the divergent pairs of the various populations were small. However, differences observed between the founder selection groups were maintained and the roles of the QTL regions in regulating forage WSC content were confirmed. In general, the individual divergent populations exploited only a limited extent of the large phenotypic variation available within the mapping family. However, this study sets the scene for exploring the opportunities for marker-assisted breeding strategies for complex traits in obligate out-breeding species, and the challenges of doing this are discussed.  相似文献   

17.
High-density single-nucleotide polymorphism (SNP) arrays have revolutionized the ability of genome-wide association studies to detect genomic regions harboring sequence variants that affect complex traits. Extensive numbers of validated SNPs with known allele frequencies are essential to construct genotyping assays with broad utility. We describe an economical, efficient, single-step method for SNP discovery, validation and characterization that uses deep sequencing of reduced representation libraries (RRLs) from specified target populations. Using nearly 50 million sequences generated on an Illumina Genome Analyzer from DNA of 66 cattle representing three populations, we identified 62,042 putative SNPs and predicted their allele frequencies. Genotype data for these 66 individuals validated 92% of 23,357 selected genome-wide SNPs, with a genotypic and sequence allele frequency correlation of r = 0.67. This approach for simultaneous de novo discovery of high-quality SNPs and population characterization of allele frequencies may be applied to any species with at least a partially sequenced genome.  相似文献   

18.
Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies.  相似文献   

19.
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

20.
线粒体DNA(mtDNA)多态性在动物保护生物学中的应用   总被引:9,自引:1,他引:9  
本文从两个方面论述了mtDNA在动物保护生物学中的应用:一是对物种进行遗传多样性的检 测与管理,二是进行与种群统计学数据相关的遗传分析。前者与保护的长期效益(如进化) 密切相关,而后者则主要用于指导短期管理措施的制定。同时,本文重点论述了mtDNA在进 化显著单位(ESUs)和管理单位(MUs)的认定方面的作用。认定ESUs的目的是隔离管理遗传多 样性,它是一系列系统进化史独特的种群,这种独特性同时表现在mtDNA和核DNA上;MUs是 种群统计意义上的生殖隔离单位,具有独特的等位基因频率,与系统发生结构和遗传分歧水 平无关。ESUs与MUs都是保护生物学中保护与管理的重要基本单位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号