首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Markov models of codon substitution are powerful inferential tools for studying biological processes such as natural selection and preferences in amino acid substitution. The equilibrium character distributions of these models are almost always estimated using nucleotide frequencies observed in a sequence alignment, primarily as a matter of historical convention. In this note, we demonstrate that a popular class of such estimators are biased, and that this bias has an adverse effect on goodness of fit and estimates of substitution rates. We propose a “corrected” empirical estimator that begins with observed nucleotide counts, but accounts for the nucleotide composition of stop codons. We show via simulation that the corrected estimates outperform the de facto standard estimates not just by providing better estimates of the frequencies themselves, but also by leading to improved estimation of other parameters in the evolutionary models. On a curated collection of sequence alignments, our estimators show a significant improvement in goodness of fit compared to the approach. Maximum likelihood estimation of the frequency parameters appears to be warranted in many cases, albeit at a greater computational cost. Our results demonstrate that there is little justification, either statistical or computational, for continued use of the -style estimators.  相似文献   

3.
A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.  相似文献   

4.
5.

Background

The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed.

Results

We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed.

Conclusions

The introduction of new constraints in an objective function by using differential elimination resulted in the drastic improvement of the estimation accuracy in parameter optimization methods. The performance of our approach was illustrated by simulations of the parameter optimization for two models of linear and non-linear equations, which included unmeasured molecules, by two types of optimization techniques. As a result, our method is a promising development in parameter optimization.
  相似文献   

6.
We introduce a supervised machine learning approach with sparsity constraints for phylogenomics, referred to as evolutionary sparse learning (ESL). ESL builds models with genomic loci—such as genes, proteins, genomic segments, and positions—as parameters. Using the Least Absolute Shrinkage and Selection Operator, ESL selects only the most important genomic loci to explain a given phylogenetic hypothesis or presence/absence of a trait. ESL models do not directly involve conventional parameters such as rates of substitutions between nucleotides, rate variation among positions, and phylogeny branch lengths. Instead, ESL directly employs the concordance of variation across sequences in an alignment with the evolutionary hypothesis of interest. ESL provides a natural way to combine different molecular and nonmolecular data types and incorporate biological and functional annotations of genomic loci in model building. We propose positional, gene, function, and hypothesis sparsity scores, illustrate their use through an example, and suggest several applications of ESL. The ESL framework has the potential to drive the development of a new class of computational methods that will complement traditional approaches in evolutionary genomics, particularly for identifying influential loci and sequences given a phylogeny and building models to test hypotheses. ESL’s fast computational times and small memory footprint will also help democratize big data analytics and improve scientific rigor in phylogenomics.  相似文献   

7.
Computer science and biology have enjoyed a long and fruitful relationship for decades. Biologists rely on computational methods to analyze and integrate large data sets, while several computational methods were inspired by the high‐level design principles of biological systems. Recently, these two directions have been converging. In this review, we argue that thinking computationally about biological processes may lead to more accurate models, which in turn can be used to improve the design of algorithms. We discuss the similar mechanisms and requirements shared by computational and biological processes and then present several recent studies that apply this joint analysis strategy to problems related to coordination, network analysis, and tracking and vision. We also discuss additional biological processes that can be studied in a similar manner and link them to potential computational problems. With the rapid accumulation of data detailing the inner workings of biological systems, we expect this direction of coupling biological and computational studies to greatly expand in the future.  相似文献   

8.
The sequencing of complete genomes allows analyses of the interactions between various biological molecules on a genomic scale, which prompted us to simulate the global behaviors of biological phenomena on the molecular level. One of the basic mathematical problems in the simulation is the parameter optimization in the kinetic model for complex dynamics, and many estimation methods have been designed. We introduce a new approach to estimate the parameters in biological kinetic models by quantifier elimination (QE), in combination with numerical simulation methods. The estimation method was applied to a model for the inhibition kinetics of HIV proteinase with ten parameters and nine variables, and attained the goodness of fit to 300 points of observed data with the same magnitude as that obtained by the previous estimation methods, remarkably by using only one or two points of data. Furthermore, the utilization of QE demonstrated the feasibility of the present method for elucidating the behavior of the parameters and the variables in the analyzed model. Therefore, the present symbolic-numeric method is a powerful approach to reveal the fundamental mechanisms of kinetic models, in addition to being a computational engine.  相似文献   

9.

Background  

Many biological processes involve the physical interaction between protein domains. Understanding these functional associations requires knowledge of the molecular structure. Experimental investigations though present considerable difficulties and there is therefore a need for accurate and reliable computational methods. In this paper we present a novel method that seeks to dock protein domains using a contact map representation. Rather than providing a full three dimensional model of the complex, the method predicts contacting residues across the interface. We use a scoring function that combines structural, physicochemical and evolutionary information, where each potential residue contact is assigned a value according to the scoring function and the hypothesis is that the real configuration of contacts is the one that maximizes the score. The search is performed with a simulated annealing algorithm directly in contact space.  相似文献   

10.
Evolutionary forces shape patterns of genetic diversity within populations and contribute to phenotypic variation. In particular, recurrent positive selection has attracted significant interest in both theoretical and empirical studies. However, most existing theoretical models of recurrent positive selection cannot easily incorporate realistic confounding effects such as interference between selected sites, arbitrary selection schemes, and complicated demographic processes. It is possible to quantify the effects of arbitrarily complex evolutionary models by performing forward population genetic simulations, but forward simulations can be computationally prohibitive for large population sizes (>105). A common approach for overcoming these computational limitations is rescaling of the most computationally expensive parameters, especially population size. Here, we show that ad hoc approaches to parameter rescaling under the recurrent hitchhiking model do not always provide sufficiently accurate dynamics, potentially skewing patterns of diversity in simulated DNA sequences. We derive an extension of the recurrent hitchhiking model that is appropriate for strong selection in small population sizes and use it to develop a method for parameter rescaling that provides the best possible computational performance for a given error tolerance. We perform a detailed theoretical analysis of the robustness of rescaling across the parameter space. Finally, we apply our rescaling algorithms to parameters that were previously inferred for Drosophila and discuss practical considerations such as interference between selected sites.  相似文献   

11.
The work presents a short history of development of evolutionary methods in the St. Petersburg school of computer simulation of biological processes. Several moments confirm priority of this school in modeling of micro- and macroevolutionary processes. A peculiarity of the school is a combination of the applied and theoretical study, penetration into the biological essence of phenomenon, consideration of real interrelationships of ecological and physiological parameters. The natural tendency for transition to modeling at the level of single individuals and then-to imitation of evolutionary processes on computer is traced. Paradoxically, such detalization sometimes does not worsen, but improves prognostic properties of models of populations, communities, and ecosystems, and besides, makes unnecessary monitoring of some variable characteristics, because the individual-based approach allows to direct account for adaptive processes and hidden evolutionary relationships between the life history parameters. Problems and perspectives of development of evolutionary methods of modeling are analyzed.  相似文献   

12.
Although developed for completely different applications, the great technological potential of data analysis methods called “data mining” has increasingly been realized as a method for efficiently analyzing potentials for optimization and for troubleshooting within many application areas of process, technology. This paper presents the successful application of data mining methods for the optimization of a fermentation process, and discusses diverse characteristics of data mining for biological processes. For the optimization of biological processes a huge amount of possibly relevant process parameters exist. Those input variables can be parameters from devices as well as process control parameters. The main challenge of such optimizations is to robustly identify relevant combinations of parameters among a huge amount of process parameters. For the underlying process we found with the application of data mining methods, that the moment a special carbohydrate component is added has a strong impact on the formation of secondary components. The yield could also be increased by using 2 m3 fermentors instead of 1 m3 fermentors.  相似文献   

13.
Wu H  Xue H  Kumar A 《Biometrics》2012,68(2):344-352
Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches.  相似文献   

14.
There are currently a large number of “orphan” G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure along the genomic sequence simultaneously with the temporal evolutionary path structure across species and show how such models can be used to discover new functional molecules, in particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic models. This computational method was used for identifying novel prohormones and the processed peptide sites by producing sequence alignments across many species at the functional-element level. Experimental results with an initial implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54 prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate the computational methodology, we present the basic molecular biological characterization of the novel putative peptide hormone, including its identification and regional localization in the brain. This species comparison, HMM-based computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of this approach will have a great impact on our understanding of GPCRs and associated pathways and help to identify new targets for drug development.  相似文献   

15.
Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and contact forces simultaneously in the knee during gait. The method utilizes a 12 degree-of-freedom knee model (femur, tibia, and patella) combining muscle, articular contact, and dynamic skeletal models. Eight static optimization problems were formulated using two cost functions (one based on muscle activations and one based on contact forces) and four constraints sets (each composed of different combinations of inverse dynamic loads). The estimated muscle and contact forces were evaluated using in vivo tibial contact force data collected from a patient with a force-measuring knee implant. When the eight optimization problems were solved with added constraints to match the in vivo contact force measurements, root-mean-square errors in predicted contact forces were less than 10 N. Furthermore, muscle and patellar contact forces predicted by the two cost functions became more similar as more inverse dynamic loads were used as constraints. When the contact force constraints were removed, estimated medial contact forces were similar and lateral contact forces lower in magnitude compared to measured contact forces, with estimated muscle forces being sensitive and estimated patellar contact forces relatively insensitive to the choice of cost function and constraint set. These results suggest that optimization problem formulation coupled with knee model complexity can significantly affect predicted muscle and contact forces in the knee during gait. Further research using a complete lower limb model is needed to assess the importance of this finding to the muscle and contact force estimation process.  相似文献   

16.
Aiming to scale up and apply control and optimization strategies, currently is required the development of accurate plant models to forecast the process nonlinear dynamics. In this work, a mathematical model to predict the growth of the Kluyveromyces marxianus and temperature profile in a fixed-bed bioreactor for solid-state fermentation using sugarcane bagasse as substrate was built up. A parameter estimation technique was performed to fit the mathematical model to the experimental data. The estimated parameters and the model fitness were evaluated with statistical analyses. The results have shown the estimated parameters significance, with 95 % confidence intervals, and the good quality of process model to reproduce the experimental data.  相似文献   

17.
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.  相似文献   

18.
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation.  相似文献   

19.
Most common methods for inferring transposable element (TE) evolutionary relationships are based on dividing TEs into subfamilies using shared diagnostic nucleotides. Although originally justified based on the “master gene” model of TE evolution, computational and experimental work indicates that many of the subfamilies generated by these methods contain multiple source elements. This implies that subfamily-based methods give an incomplete picture of TE relationships. Studies on selection, functional exaptation, and predictions of horizontal transfer may all be affected. Here, we develop a Bayesian method for inferring TE ancestry that gives the probability that each sequence was replicative, its frequency of replication, and the probability that each extant TE sequence came from each possible ancestral sequence. Applying our method to 986 members of the newly-discovered LAVA family of TEs, we show that there were far more source elements in the history of LAVA expansion than subfamilies identified using the CoSeg subfamily-classification program. We also identify multiple replicative elements in the AluSc subfamily in humans. Our results strongly indicate that a reassessment of subfamily structures is necessary to obtain accurate estimates of mutation processes, phylogenetic relationships and historical times of activity.  相似文献   

20.
The presence of different batches is routinely observed in microarray studies and is well known that non-biological variability potentially confounding biological differences is commonly related to such batches. The removal of these undesired effects for a non-biased inference is often accomplished either with normalization methods that do not take into account all the available information, or with models that rely on strong parametric assumptions. We have developed a new method for the batch effects removal, named ber, which is based on a two-stage procedure for the estimation of location and scale parameters. Batch effects and biological differences are estimated using a regression approach and bagging, therefore mild distributional assumptions are required. We have compared ber with other commonly employed methods and we have shown that ber can bring to a higher power in detecting differentially expressed genes. The application of ber to a real microarray study led to interpretable biological results. The method is implemented in the R package ber, available through CRAN repository.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号