首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conserved family of eukaryotic RNA-dependent RNA polymerases (RDRs) initiates or amplifies the production of small RNAs to provide sequence specificity for gene regulation by Argonaute/Piwi proteins. RDR-dependent silencing processes affect the genotype-phenotype relationship in many eukaryotes, but the principles that underlie the specificity of RDR template selection and product synthesis are largely unknown. Here, we characterize the initiation specificity of the Tetrahymena RDR, Rdr1, as a heterologously expressed single subunit and in the context of its biologically assembled multisubunit complexes (RDRCs). Truncation analysis of recombinant Rdr1 revealed domain requirements different from those of the only other similarly characterized RDR, suggesting that there are subfamilies of the RDR enzyme with distinct structural requirements for activity. We demonstrate an apparently obligate Rdr1 mechanism of initiation in which the template end is looped to provide the hydroxyl group priming the synthesis of dsRNA. RDRC subunits with poly(U) polymerase activity can act on the template end prior to looping to increase the duplex length of product, thus impacting the small RNA sequences generated by the RDRC-coupled Dicer. Overall, our findings give new perspective on mechanisms of RDR initiation and demonstrate that non-RDR subunits of an RDRC can affect the specificity of product synthesis.  相似文献   

2.
3.
Small RNAs (sRNAs) play a key role in eukaryotic gene regulation, for example by gene silencing via RNA interference (RNAi). The biogenesis of sRNAs depends on proteins that are generally conserved in all eukaryotic lineages, yet some species that lack part or all the components of the mechanism exist. Here we explored the presence of the RNAi machinery and its expression as well as the occurrence of sRNA candidates and their putative endogenous as well as host targets in phytopathogenic powdery mildew fungi. We focused on the species Blumeria graminis, which occurs in various specialized forms (formae speciales) that each have a strictly limited host range. B. graminis f. sp. hordei and B. graminis f. sp. tritici, colonizing barley and wheat, respectively, have genomes that are characterized by extensive gene loss. Nonetheless, we find that the RNAi machinery appears to be largely complete and expressed during infection. sRNA sequencing data enabled the identification of putative sRNAs in both pathogens. While a considerable part of the sRNA candidates have predicted target sites in endogenous genes and transposable elements, a small proportion appears to have targets in planta, suggesting potential cross-kingdom RNA transfer between powdery mildew fungi and their respective plant hosts.  相似文献   

4.
5.
Omnipotent RNA     
Spirin AS 《FEBS letters》2002,530(1-3):4-8
The capability of polyribonucleotide chains to form unique, compactly folded structures is considered the basis for diverse non-genetic functions of RNA, including the function of recognition of various ligands and the catalytic function. Together with well-known genetic functions of RNA – coding and complementary replication – this has led to the concept of the functional omnipotence of RNA and the hypothesis that an ancient RNA world supposedly preceded the contemporary DNA–RNA–protein life. It is proposed that the Woese universal precursor in the ancient RNA world could be a cell-free community of mixed RNA colonies growing and multiplying on solid surfaces.  相似文献   

6.
7.
Conformational dynamics are essential to macromolecular function. This is certainly true of RNA, whose ability to undergo programmed conformational dynamics is essential to create and regulate complex biological processes. However, methods to easily and simultaneously interrogate both the structure and conformational dynamics of fully functional RNAs in isolation and in complex with proteins have not historically been available. Due to its ability to image and classify single particles, cryogenic electron microscopy (cryo-EM) has the potential to address this gap and may be particularly amenable to exploring structural dynamics within the three-dimensional folds of biologically active RNAs. We discuss the possibilities and current limitations of applying cryo-EM to simultaneously study RNA structure and conformational dynamics, and present one example that illustrates this (as of yet) not fully realized potential.  相似文献   

8.
RNA空间结构同线性结构一样包含着重要的生物信息。RNA空间编码蕴含了RNA功能信息。RNA空间编码具有简并性、通用性、动态性、重叠性、间隔性和方向性等性质。本文对RNA空间编码的概念和性质进行了初步探讨。  相似文献   

9.
RNA polymerase II (Pol II) is a well‐characterized DNA‐dependent RNA polymerase, which has also been reported to have RNA‐dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non‐coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3′‐end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α‐amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3′‐end.  相似文献   

10.
Genomes of RNA viruses encounter a continual threat from host cellular ribonucleases. Therefore, viruses have evolved mechanisms to protect the integrity of their genomes. To study the mechanism of 3′-end repair in dengue virus-2 in mammalian cells, a series of 3′-end deletions in the genome were evaluated for virus replication by detection of viral antigen NS1 and by sequence analysis. Limited deletions did not cause any delay in the detection of NS1 within 5 d. However, deletions of 7–10 nucleotides caused a delay of 9 d in the detection of NS1. Sequence analysis of RNAs from recovered viruses showed that at early times, virus progenies evolved through RNA molecules of heterogeneous lengths and nucleotide sequences at the 3′ end, suggesting a possible role for terminal nucleotidyl transferase activity of the viral polymerase (NS5). However, this diversity gradually diminished and consensus sequences emerged. Template activities of 3′-end mutants in the synthesis of negative-strand RNA in vitro by purified NS5 correlate well with the abilities of mutant RNAs to repair and produce virus progenies. Using the Mfold program for RNA structure prediction, we show that if the 3′ stem–loop (3′ SL) structure was abrogated by mutations, viruses eventually restored the 3′ SL structure. Taken together, these results favor a two-step repair process: non-template-based nucleotide addition followed by evolutionary selection of 3′-end sequences based on the best-fit RNA structure that can support viral replication.  相似文献   

11.
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.  相似文献   

12.
The secondary structure of encapsidated MS2 genomic RNA poses an interesting RNA folding challenge. Cryoelectron microscopy has demonstrated that encapsidated MS2 RNA is well-ordered. Models of MS2 assembly suggest that the RNA hairpin-protein interactions and the appropriate placement of hairpins in the MS2 RNA secondary structure can guide the formation of the correct icosahedral particle. The RNA hairpin motif that is recognized by the MS2 capsid protein dimers, however, is energetically unfavorable, and thus free energy predictions are biased against this motif. Computer programs called Crumple, Sliding Windows, and Assembly provide useful tools for prediction of viral RNA secondary structures when the traditional assumptions of RNA structure prediction by free energy minimization may not apply. These methods allow incorporation of global features of the RNA fold and motifs that are difficult to include directly in minimum free energy predictions. For example, with MS2 RNA the experimental data from SELEX experiments, crystallography, and theoretical calculations of the path for the series of hairpins can be incorporated in the RNA structure prediction, and thus the influence of free energy considerations can be modulated. This approach thoroughly explores conformational space and generates an ensemble of secondary structures. The predictions from this new approach can test hypotheses and models of viral assembly and guide construction of complete three-dimensional models of virus particles.  相似文献   

13.
在植物中发现大量内源性的小RNA,它们与真核生物中的内源性的微RNA和外源性的干扰小RNA有类似的性质和功能。本对植物中小RNA分子的分布、作用机制、功能以及信号传导等方面作一概述。  相似文献   

14.
The entire sequence of 13952 nucleotides of a plasmid-like, double-stranded RNA (dsRNA) from rice was assembled from more than 50 independent cDNA clones. The 5 non-coding region of the coding (sense) strand spans over 166 nucleotides, followed by one long open reading frame (ORF) of 13716 nucleotides that encodes a large putative polyprotein of 4572 amino acid residues, and by a 70-nucleotide 3 noncoding region. This ORF is apparently the longest reported to date in the plant kingdom. Amino acid sequence comparisons revealed that the large putative polyprotein includes an RNA helicase-like domain and an RNA-dependent RNA polymerase (replicase)-like domain. Comparisons of the amino acid sequences of these two domains and of the entire genetic organization of the rice dsRNA with those found in potyviruses and the CHV1-713 dsRNA of chestnut blight fungus suggest that the rice dsRNA is located evolutionarily between potyviruses and the CHV1-713 dsRNA. This plasmid-like dsRNA in rice seems to constitute a novel RNA replicon in plants.  相似文献   

15.
Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min− 1, while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~ 1 min− 1). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the “choice” is enforced by energy barriers that grow larger as folding progresses.  相似文献   

16.
17.
It is a significant challenge to predict RNA secondary structures including pseudoknots. Here, a new algorithm capable of predicting pseudoknots of any topology, ProbKnot, is reported. ProbKnot assembles maximum expected accuracy structures from computed base-pairing probabilities in O(N2) time, where N is the length of the sequence. The performance of ProbKnot was measured by comparing predicted structures with known structures for a large database of RNA sequences with fewer than 700 nucleotides. The percentage of known pairs correctly predicted was 69.3%. Additionally, the percentage of predicted pairs in the known structure was 61.3%. This performance is the highest of four tested algorithms that are capable of pseudoknot prediction. The program is available for download at: http://rna.urmc.rochester.edu/RNAstructure.html.  相似文献   

18.
Human Suv3 is a unique homodimeric helicase that constitutes the major component of the mitochondrial degradosome to work cooperatively with exoribonuclease PNPase for efficient RNA decay. However, the molecular mechanism of how Suv3 is assembled into a homodimer to unwind RNA remains elusive. Here, we show that dimeric Suv3 preferentially binds to and unwinds DNA–DNA, DNA–RNA, and RNA–RNA duplexes with a long 3′ overhang (≥10 nucleotides). The C‐terminal tail (CTT)‐truncated Suv3 (Suv3ΔC) becomes a monomeric protein that binds to and unwinds duplex substrates with ~six to sevenfold lower activities relative to dimeric Suv3. Only dimeric Suv3, but not monomeric Suv3ΔC, binds RNA independently of ATP or ADP, and is capable of interacting with PNPase, indicating that dimeric Suv3 assembly ensures its continuous association with RNA and PNPase during ATP hydrolysis cycles for efficient RNA degradation. We further determined the crystal structure of the apo‐form of Suv3ΔC, and SAXS structures of dimeric Suv3 and PNPase–Suv3 complex, showing that dimeric Suv3 caps on the top of PNPase via interactions with S1 domains, and forms a dumbbell‐shaped degradosome complex with PNPase. Overall, this study reveals that Suv3 is assembled into a dimeric helicase by its CTT for efficient and persistent RNA binding and unwinding to facilitate interactions with PNPase, promote RNA degradation, and maintain mitochondrial genome integrity and homeostasis.  相似文献   

19.
生物体内存在大量的非编码RNA ,它们形态各异 ,功能也千差万别 ,在生物的生长、发育、分化进程中扮演着不同的角色 ,尤其是siRNA ,它是RNA沉默的诱因。RNA沉默是真核生物特有的现象 ,它需要一系列因子的参与 ,其中RNA依赖性的RNA聚合酶是沉默起始的关键 ,Dicer酶是形成siRNA的基础 ,而RNA沉默诱导复合体 (RSIC)等是发生RNA沉默“链式反应”的关键因子  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号