首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objectives

Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source.

Results

This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m?3. At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m?3 and 18.8 g COD m?3 h?1, respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450–600 to 350–370 Ω.

Conclusions

Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
  相似文献   

2.

Objective

To investigate a syntrophic interaction between Geobacter sulfurreducens and hydrogenotrophic methanogens in sludge-inoculated microbial fuel cell (MFC) systems running on glucose with an improved electron recovery at the anode.

Results

The presence of archaea in MFC reduces Coulombic efficiency (CE) due to their electron scavenging capability but, here, we demonstrate that a syntrophic interaction can occur between G. sulfurreducens and hydrogenotrophic methanogens via interspecies H2 transfer with improvement in CE and power density. The addition of the methanogenesis inhibitor, 2-bromoethanesulfonate (BES), resulted in the reduction in power density from 5.29 to 2 W/m3, and then gradually increased to the peak value of 5.5 W/m3 when BES addition was stopped.

Conclusion

Reduction of H2 partial pressure by archaea is an efficient approach in improving power output in a glucose-fed MFC system using Geobacter sp. as an inoculum.
  相似文献   

3.

Objectives

Power production characteristics and substrate concentration dependence of voltage have been investigated together with the determination of kinetic constants in two-chambered mediator-less microbial fuel cells (MFC) for acetate and peptone substrates.

Results

At 500 mg DOC l?1 (dissolved organic carbon), power densities normalized to the anode surface of 112 mW m?2 with acetate and 114 mW m?2 with peptone as electron donor were attained by applying cathodes with a Pt catalyst layer. Related anode surface specific substrate removal rate was 44 g DOC m?2 h?1 for acetate and 52 g DOC m?2 h?1 for peptone. Substrate concentration dependency of the voltage suggests Monod-like kinetics with extremely low, <1 mg DOC l?1, half saturation constants and with final DOC concentrations of 6–10 mg l?1.

Conclusions

Acetate and peptone are equivalent substrates for the exoelectrogenic bacteria both from the point of view of biodegradation kinetics and power production characteristics.
  相似文献   

4.

Background and aims

We examined changes in soil organic matter arising from conversion of a 45-year old pasture to a 10 yr. old native tree plantation in Panamá, to evaluate the effect of monoculture and mixtures.

Methods

We intensively sampled the soil 0–10 cm depth in the pasture in 2001 and in 22 plantation plots in 2011, ranging from 5 monocultures to 3- and 6-species treatments; samples were also taken from an undisturbed forest site. Soil analyses included organic carbon (SOC) and δ13C.

Results

Conversion of the pasture to tree plantation resulted in an overall loss of SOC of 0.6 kg m?2 (18%) in the top 10 cm, but neither tree species nor diversity had a significant effect. End-member δ13C values suggested that the contribution of C3 plants to SOC was increased from 26% in the pasture to 55% after 10 years of plantation and SOC turnover times were calculated to be 21–36 yr.

Conclusions

The magnitude of the loss in soil SOC is smaller than the increases in tree biomass (~3 kg C m?2) and litter (~0.3 kg C m?2) in the plantation, but still a significant part of the ecosystem C balance.
  相似文献   

5.

Objectives

To increase the power generation of microbial fuel cells (MFCs), anode modification with carbon materials (activated carbon, carbon nanotubes, and carbon nanohorns) was investigated.

Results

Maximum power densities of a stainless-steel anode MFC with a non-modified electrode (SS-MFC), an activated carbon-modified electrode (AC-MFC), a carbon nanotube-modified electrode (CNT-MFC) and a carbon nanohorn-modified electrode (CNH-MFC) were 72, 244, 261 and 327 mW m?2, respectively. The total polarization resistance measured by electrochemical impedance spectroscopy were 3610 Ω for SS-MFC, 283 Ω for AC-MFC, 231 Ω for CNTs-MFC, and 136 Ω for CNHs-MFC, consistent with the anode resistances obtained by fitting the anode polarization curves.

Conclusions

Single-wall carbon nanohorns are better than activated carbon and carbon nanotubes as a new anode modification material for improving anode performance.
  相似文献   

6.

Background and Aims

Rock fragments within topsoil have important effects on soil properties and plant growth. This study mainly aimed to investigate the relationships between rock fragments, soil carbon (C) and nitrogen (N) densities and vegetation biomass in an alpine steppe.

Methods

Rock fragments, plant and soil samples were collected from four topographic positions (top, upper, lower, and bottom) on a hillslope.

Results

Volumetric rock fragment content within the 0–30 cm soil profile varied from 17.8 to 30.5%, the upper position value was significantly greater (P < 0.05) than those at other positions. The highest aboveground biomass was observed at the lower position (921 kg ha?1), while the highest belowground biomass within the 0–30 cm profile was found at the upper position (4460 kg ha?1). More fine earth and plant litter input accompanied by lower C and N losses induced by rainfall erosion resulted in higher soil organic C and total N densities (28.6 Mg C ha?1 and 2.87 Mg N ha?1) at the lower position.

Conclusions

Rock fragments may promote root growth but limit aboveground biomass production, and can therefore change the biomass distribution pattern. Our findings provide more evidence for scientifically assessing alpine steppe productivity.
  相似文献   

7.

Objective

To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters.

Results

A maximum power density of 1.4 W/m3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%.

Conclusion

A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.
  相似文献   

8.

Objectives

To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides).

Results

Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m?2 s?1 than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a.

Conclusion

White light at 90 μmol m?2 s?1 or blue light 30 μmol m?2 s?1 were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.
  相似文献   

9.

Aims

The objective of this study was to investigate the effects of the precipitation changes on soil, microbial and root respirations of switchgrass soils, and the relationships between soil respiration and plant growth, soil moisture and temperature.

Methods

A mesocosm experiment was conducted with five precipitation treatments over two years in a greenhouse in Nashville, Tennessee. The treatments included ambient precipitation, ?50%, ?33%, +33% and +50% of ambient precipitation. Soil, microbial, and root respirations were quantified during the growing seasons.

Results

Mean soil and root respirations in the +50% treatment were the highest (2.48 and 0.93 μmol CO2 m?2 s?1, respectively) among all treatments. Soil microbial respiration contributed more to soil respiration, and had higher precipitation sensitivity mostly than root respiration. Increases in precipitation mostly enhanced microbial respiration while decreases in precipitation reduced both microbial and root respirations. Across precipitation treatments, soil respiration was significantly influenced by soil moisture, soil temperature, and aboveground biomass.

Conclusions

Our results showed that microbial respiration was more sensitive to precipitation changes, and precipitation regulated the response of soil respiration to soil temperature. The information generated in this study will be useful for model simulation of soil respiration in switchgrass fields under precipitation changes.
  相似文献   

10.

Background and aims

Macropores may be preferential root pathways into the subsoil. We hypothesised that the presence of macropores promotes P-uptake from subsoil, particularly at limited water supply in surface soil. We tested this hypothesis in a rhizotron experiment with spring wheat (Triticum aestivum cv. Scirocco) under variation of fertilisation and irrigation.

Methods

Rhizotrons were filled with compacted subsoil (bulk density 1.4 g cm?3), underneath a P-depleted topsoil. In half of these rhizotrons the subsoil contained artificial macropores. Spring wheat was grown for 41 days with and without irrigation and 31P–addition. Also, a 33P–tracer was added at the soil surface to trace P-distribution in plants using liquid scintillation counting and radioactive imaging.

Results

Fertilisation and irrigation promoted biomass production and plant P-uptake. Improved growing conditions resulted in a higher proportion of subsoil roots, indicating that the topsoil root system additionally promoted subsoil nutrient acquisition. The presence of macropores did not improve plant growth but tended to increase translocation of 33P into both above- and belowground biomass. 33P–imaging confirmed that this plant-internal transport of topsoil-P extended into subsoil roots.

Conclusions

The lack of penetration resistance in macropores did not increase plant growth and nutrient uptake from subsoil here; however, wheat specifically re-allocated topsoil-P for subsoil root growth.
  相似文献   

11.

Aims

It has been increasingly recognized that only distal lower order roots turn over actively within the <2 mm fine root system of trees. This study aimed to estimate fine root production and turnover rate based on lower order fine roots and their relations to soil variables in mangroves.

Methods

We conducted sequential coring in five natural mangrove forests at Dongzhai Bay, China. Annual fine root production and turnover rate were calculated based on the seasonal variations of the biomass and necromass of lower order roots or the whole fine root system.

Results

Annual fine root production and turnover rate ranged between 571 and 2838 g m?2 and 1.46–5.96 yr?1, respectively, estimated with lower order roots, and they were increased by 0–30 % and reduced by 13–48 %, respectively, estimated with the whole fine root system. Annual fine root production was 1–3.5 times higher than aboveground litter production and was positively related to soil carbon, nitrogen and phosphorus concentrations. Fine root turnover rate was negatively related to soil salinity.

Conclusions

Mangrove fine root turnover plays a more important role than aboveground litter production in soil C accumulation. Sites with higher soil nutrients and lower salinity favor fine root production and turnover, and thus favor soil C accumulation.
  相似文献   

12.

Aims

We assessed and quantified the cumulative impact of 20 years of biomass management on the nature and bioavailability of soil phosphorus (P) accumulated from antecedent fertiliser inputs.

Methods

Soil (0–2.5, 2.5–5, 5–10 cm) and plant samples were taken from replicate plots in a grassland field experiment maintained for 20 years under contrasting plant biomass regimen- biomass retained or removed after mowing. Analyses included dry matter production and P uptake, root biomass, total soil carbon (C), total nitrogen (N), total P, soil P fractionation, and 31P NMR spectroscopy.

Results

Contemporary plant production and P uptake were over 2-fold higher for the biomass retained compared with the biomass removed regimes. Soil C, total P, soluble and labile forms of inorganic and organic soil P were significantly higher under biomass retention than removal.

Conclusions

Reserves of soluble and labile inorganic P in soil were significantly depleted in response to continued long-term removal of P in plant biomass compared to retention. However, this was only sufficient to sustain plant production at half the level observed for the biomass retention after 20 years, which was partly attributed to limited mobilisation of organic P in response to P removal.
  相似文献   

13.

Objective

To investigate green synthesis of gold nanoparticles (AuNPs) by Trichosporon montevideense, and to study their reduction of nitroaromatics.

Results

AuNPs had a characteristic absorption maximum at 535 nm. Scanning electron microscopy images revealed that the biosynthesized nanoparticles were attached on the cell surface. X-ray diffraction analysis indicated that the particles formed as face-centered cubic (111)-oriented crystals. The average size of AuNPs decreased from 53 to 12 nm with increasing biomass concentration. The catalytic reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitrophenylamine and m-nitrophenylamine (0.1 mM) by NaBH4 had reaction rate constants of 0.32, 0.44, 0.09, 0.24 and 0.39 min?1 with addition of 1.45 × 10?2 mM AuNPs.

Conclusions

An eco-friendly approach for synthesis of AuNPs by T. montevideense is reported for the first time. The biogenic AuNPs could serve as efficient catalysts for hydrogenation of various nitroaromatics.
  相似文献   

14.

Aims

The mechanisms underlying magnesium (Mg) uptake by plant roots remain to be fully elucidated. In particular, there is little information about the effects of Mg deficiency on Mg uptake activity. A Mg uptake kinetic study is essential for better understanding the Mg uptake system.

Methods

We performed a Mg uptake tracer experiment in rice plants using 28?Mg.

Results

Mg uptake was mediated by high- and low-affinity transport systems. The K m value of the high-affinity transport system was approximately 70 μM under Mg-deficient conditions. The Mg uptake activity was promoted by Mg deficiency, which in turn fell to the basal level after 5- min of Mg resupply. The induced uptake rate was inhibited by ionophore treatment, suggesting that an energy-dependent uptake system is enhanced by Mg deficiency.

Conclusions

The Mg uptake changes rapidly with Mg conditions in rice, as revealed by a 28?Mg tracer experiment. This technique is expected to be applicable for Mg uptake analyses, particularly in mutants or other lines.
  相似文献   

15.

Background and aims

Common bean (Phaseolus vulgaris L.) nodulates with a wide range of rhizobia. Amongst these is Bradyrhizobium, which is inefficient but able to induce profuse nodulation on this crop. Based on this observation, we tested whether co-inoculating bradyrhizobia with a more standard common bean symbiont, Rhizobium tropici, could stimulate growth and nodulation of common bean, thus contributing to a more effective symbiosis.

Methods

Rhizobium tropici was co-inoculated with two Bradyrhizobium strains applied at three different doses (104, 106, and 108 CFU seed?1) under sterile conditions, and at a single dose (108 CFU seed?1) in non-sterile soil. Plant biomass, nodulation, and N accumulation in plant tissues were evaluated.

Results

Co-inoculated plants produced more nodules, and accumulated more shoot dry biomass and nitrogen than plants inoculated with R. tropici alone under gnotobiotic conditions. Significant responses were observed at the highest inoculum dose and a significant correlation between dose and shoot dry weight was observed. Co-inoculation increased biomass and N accumulation in non-sterile soil, although with a smaller magnitude.

Conclusions

Altogether, our findings suggest that the co-inoculation with bradyrhizobia contributed to an improved symbiotic interaction between R. tropici and common beans.
  相似文献   

16.

Background and aims

Studies have found significant differences in methane (CH4) emissions among rice cultivars; however, it is unclear whether this difference is related to radial oxygen loss (ROL) from the roots.

Methods

Based on a 2-year in situ field study and solution culture experiments on 16 rice cultivars, we investigated CH4 emission levels and their dependence on ROL.

Results

We detected significant differences in CH4 emission and ROL among rice cultivars. The lowest and highest CH4 emission levels were 4.10 and 7.35 g m?2 for early rice, and 14.36 and 23.33 g m?2 for late rice, respectively. The maximum and minimum ROL values were 3.77 and 1.73 mmol plant?1 h?1 for early rice, and 4.18 and 2.08 mmol plant?1 h?1 for late rice, respectively. Seasonal total CH4 emission was negatively correlated with ROL in the early rice season (p?<?0.01), and (p?<?0.01) in the late rice season. ROL was positively correlated with the number of roots per plant (RN), root tips per plant (RT), and root volume per plant (RV).

Conclusions

We suggest that ROL can be used as a predictive index for CH4 emissions. RN, RT, and RV were the most important factors influencing ROL in rice cultivars.
  相似文献   

17.

Background and aims

Layered profiles of designed soils may provide long-term benefits for green roofs, provided the vegetation can exploit resources in the different layers. We aimed to quantify Sedum root foraging for water and nutrients in designed soils of different texture and layering.

Methods

In a controlled pot experiment we quantified the root foraging ability of the species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and watering (5, 10 or 20 mm week?1).

Results

Water availability was the main driver of plant growth, followed by substrate structure, while fertiliser placement only had marginal effects on plant growth. Root foraging ability was low to moderate, as also reflected in the low proportion of biomass allocated to roots (5–13%). Increased watering reduced the proportion of root length and root biomass in deeper layers.

Conclusions

Both S. album and S. rupestre had a low ability to exploit water and nutrients by precise root foraging in substrates of different texture and layering. Allocation of biomass to roots was low and showed limited flexibility even under water-deficient conditions.
  相似文献   

18.

Background

This study aims to assess suitability of hydroponic technology for treatment of brewery wastewater in a hydroponic bioreactor using Typha latifolia. Triplicated hydroponic bioreactor treatment units were designed, constructed and operated at a hydraulic retention time of 5?days with different surface loadings and mean hydraulic loading rate 0.023?m3 m?2d??1. Young T. latifolia shoots were collected in the vicinity of study site. Wastewater characteristics, plant growth and nutrient accumulation during experiment were analyzed as per APHA standard methods and nutrient removal efficiency was evaluated based on inlet and outlet values.

Results

T. latifolia established and grew well in the hydroponics under fluctuations of wastewater loads and showed a good phytoremedial capacity to remove nutrients. Significant removal efficiencies (p?<?0.05) varied between 54 and 80% for Total Kjeldahl Nitrogen, 42 and 65% for NH4+ -N, 47 and 58% for NO3? -N, and 51 and 70% for PO43?-P. The system improved the removal up to 29% compared to control and produced biomass of 0.61–0.86?kg dry weight (DW) m??2. Nutrients retained were up to 21.17?g?N?kg??1 DW and 2.87?g P kg??1 DW.

Conclusion

The significant nutrients reduction obtained and production of biomass led us to conclude that hydroponics technology using T. latifolia has suitability potential for treatment of brewery wastewater and similar agro-industrial wastewaters. Thus it could be considered as a promising eco-friendly option for wastewater treatment to mitigate water pollution. Integration of treatment and production of biomass needs further improvement.
  相似文献   

19.

Objective

To breed Aspergillus oryzae strains with high fructosyltransferase (FTase) activity using intraspecific protoplast fusion via genome-shuffling.

Results

A candidate library was developed using UV/LiCl of the conidia of A. oryzae SBB201. By screening for enzyme activity and cell biomass, two mutants (UV-11 and UV-76) were chosen for protoplast fusion and subsequent genome shuffling. After three rounds of genome recombination, a fusion mutant RIII-7 was obtained. Its FTase activity was 180 U g?1, approximately double that of the original strain, and RIII-7 was genetically stable. In fermentation culture, FTase activity of the genome-shuffled strain reached a maximum of 353 U g?1 using substrate-feeding method, and this value was approximately 3.4-times higher than that of the original strain A. oryzae SBB201.

Conclusions

Intraspecific protoplast fusion of A. oryzae significantly enhanced FTase activity and generated a potentially useful strain for industrial production.
  相似文献   

20.

Purpose

The use of cardiac magnetic resonance (CMR) analysis has increased in patients with hypertrophic cardiomyopathy (HCM). Quantification of left ventricular (LV) measures will be affected by the inclusion or exclusion of the papillary muscles as part of the LV mass, but the magnitude of effect and potential consequences are unknown.

Methods

We performed Cine-CMR in (1) clinical HCM patients (n?=?55) and (2) subclinical HCM mutation carriers without hypertrophy (n?=?14). Absolute and relative differences in LV ejection fraction (EF) and mass were assessed between algorithms with and without inclusion of the papillary muscles.

Results

Papillary muscle mass in group 1 was 6.6?±?2.5 g/m2 and inclusion of the papillary muscles resulted in significant relative increases in LVEF of 4.5?±?1.8?% and in LV mass of 8.7?±?2.6?%. For group 2 these figures were 4.0?±?0.9 g/m2, 3.8?±?1.0?% and 9.5?±?1.8?%, respectively. With a coefficient of variation of 4?%, this 9?% difference in LV mass during CMR follow-up will be considered a change, while in fact the exact same mass may have been assessed according to two different algorithms.

Conclusions

In clinical HCM patients, CMR quantification of important LV measures is significantly affected by inclusion or exclusion of the papillary muscles. In relative terms, the difference was similar in subjects without hypertrophy. This underscores a general need for a uniform approach in CMR image analysis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号