首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

Objectives

To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode.

Results

A maximum power output of 114 ± 6 mWm?2 was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm?2. The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels.

Conclusion

S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
  相似文献   

2.

Objectives

Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source.

Results

This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m?3. At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m?3 and 18.8 g COD m?3 h?1, respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450–600 to 350–370 Ω.

Conclusions

Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
  相似文献   

3.

Purpose

To evaluate the efficiency of corneal collagen cross-linking (CXL) in addition to topical voriconazole in cases with mycotic keratitis.

Design

Retrospective case series in a tertiary university hospital.

Participants

CXL was performed on 13 patients with mycotic keratitis who presented poor or no response to topical voriconazole treatment.

Methods

The clinical features, symptoms, treatment results and complications were recorded retrospectively. The corneal infection was graded according to the depth of infection into the stroma (from grade 1 to grade 3). The visual analogue scale was used to calculate the pain score before and 2 days after surgery.

Main Outcome Measures

Grade of the corneal infection.

Results

Mean age of 13 patients (6 female and 7 male) was 42.4 ± 17.7 years (20–74 years). Fungus was demonstrated in culture (eight patients) or cytological examination (five patients). Seven of the 13 patients (54%) were healed with topical voriconazole and CXL adjuvant treatment in 26 ± 10 days (15–40 days). The remaining six patients did not respond to CXL treatment; they initially presented with higher grade ulcers. Pre- and post-operative pain score values were 8 ± 0.8 and 3.5 ± 1, respectively (p < 0.05).

Conclusions

The current study suggests that adjunctive CXL treatment is effective in patients with small and superficial mycotic ulcers. These observations require further research by large randomized clinical trials.
  相似文献   

4.

Background

Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing.

Method

Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy.

Results

Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased.

Conclusion

Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
  相似文献   

5.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

6.

Background

Centrifugation is an indispensable procedure for plasma sample preparation, but applied conditions can vary between labs.

Aim

Determine whether routinely used plasma centrifugation protocols (1500×g 10 min; 3000×g 5 min) influence non-targeted metabolomic analyses.

Methods

Nuclear magnetic resonance spectroscopy (NMR) and High Resolution Mass Spectrometry (HRMS) data were evaluated with sparse partial least squares discriminant analyses and compared with cell count measurements.

Results

Besides significant differences in platelet count, we identified substantial alterations in NMR and HRMS data related to the different centrifugation protocols.

Conclusion

Already minor differences in plasma centrifugation can significantly influence metabolomic patterns and potentially bias metabolomics studies.
  相似文献   

7.

Objectives

To design and construct a novel bio-anode electrode based on the oxidation of glutamic acid to produce 2-oxoglutarate, generating two electrons from NADH.

Results

Efficient enzyme reaction and electron transfer were observed owing to immobilization of the two enzymes using a mixed self-assembled monolayer. The ratio of the immobilized enzymes was an important factor affecting the efficiency of the system; thus, we quantified the amounts of immobilized enzyme using a quartz crystal microbalance to further evaluate the electrochemical reaction. The electrochemical reaction proceeded efficiently when approximately equimolar amounts of the enzyme were on the electrode. The largest oxidation peak current increase (171 nA) was observed under these conditions.

Conclusion

Efficient multi-enzyme reaction on the electrode surface has been achieved which is applicable for biofuel cell application.
  相似文献   

8.

Objective

To demonstrate that an enhanced sediment microbial fuel cell (SMFC) system can accelerate the degradation of cellulose in fresh water sediments as the accumulation of cellulose in lake sediments may aggravate the lake marsh, increase organic matter content and result in rapid deterioration of water quality and damage the ecosystem.

Results

After 330 days the highest cellulose removal efficiency (72.7 ± 2.1 %) was achieved in the presence of a SMFC with a carbon nanotube decorated cathode, followed by a SMFC without the cathode decoration (64.4 ± 2.8 %). The lowest cellulose removal efficiency (47.9 ± 2.1 %) was in the absence of SMFC. The sediment characterization analysis confirmed that the carbon nanotube decorated cathode enhances the electron transfer rate in the SMFC and improves the dissolved organic matter oxidation rate.

Conclusion

This study offers a relatively simple and promising new method for cellulose degradation in sediment.
  相似文献   

9.

Background

R-wave synchronised atrial pacing is an effective temporary pacing therapy in infants with postoperative junctional ectopic tachycardia. In the technique currently used, adverse short or long intervals between atrial pacing and ventricular sensing (AP–VS) may be observed during routine clinical practice.

Objectives

The aim of the study was to analyse outcomes of R-wave synchronised atrial pacing and the relationship between maximum tracking rates and AP–VS intervals.

Methods

Calculated AP–VS intervals were compared with those predicted by experienced pediatric cardiologist.

Results

A maximum tracking rate (MTR) set 10 bpm higher than the heart rate (HR) may result in undesirable short AP–VS intervals (minimum 83 ms). A MTR set 20 bpm above the HR is the hemodynamically better choice (minimum 96 ms). Effects of either setting on the AP–VS interval could not be predicted by experienced observers. In our newly proposed technique the AP–VS interval approaches 95 ms for HR > 210 bpm and 130 ms for HR < 130 bpm. The progression is linear and decreases strictly (? 0.4 ms/bpm) between the two extreme levels.

Conclusions

Adjusting the AP–VS interval in the currently used technique is complex and may imply unfavorable pacemaker settings. A new pacemaker design is advisable to allow direct control of the AP–VS interval.
  相似文献   

10.

Objectives

To evaluate the effects of dexamethasone on the aging of mesenchymal stem cells from human gingiva using next-generation sequencing.

Results

Four mRNAs were upregulated and 12 were downregulated when the results of dexamethasone at 24 h were compared with the control at 24 h. Expressions of SIRT1 and IL6 were decreased in dexamethasone at 24 h but expression of EDN1 was increased.

Conclusions

Application of dexamethasone reduced the expression of SIRT1 and IL6 but enhanced the expression of EDN1 of stem cells.
  相似文献   

11.

Objective

The aim of this study was to investigate the developmental competence of oocytes parthenogenetically activated by an electric pulse (EP) and treated with anisomycin and to determine whether this method is applicable to somatic cell nuclear transfer (SCNT).

Results

Embryos derived from porcine oocytes parthenogenetically activated by an EP and treatment with 0.01 µg/mL anisomycin had a significantly improved in vitro developmental capacity. Furthermore, 66.6% of blastocysts derived from these embryos had a diploid karyotype. The blastocyst formation rate of cloned embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 0.01 µg/mL anisomycin for 4 h. The level of maturation-promoting factor was significantly decreased in oocytes activated by an EP and treated with anisomycin. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR.

Conclusion

Our results demonstrate that porcine oocyte activation via an EP in combination with anisomycin treatment can lead to a high blastocyst formation rate in parthenogenetic activation and SCNT experiments.
  相似文献   

12.

Objective

Water in oil emulsions increase oil processing costs and cause damage to refinery equipment which necessitates demulsification. Since chemical demulsifiers cause environmental pollution, biodemulsifiers have been paid more attention. This study aims to identify biodemulsifier-producing bacteria from petroleum contaminated environments.

Results

As a result, several biodemulsifier producing strains were found that Stenotrophomonas sp. strain HS7 (accession number: MF445088) which produced a cell associated biodemulsifier showed the highest demulsifying ratio, 98.57% for water in kerosene and 66.28% for water in crude oil emulsion after 48 h. 35 °C, pH 7, 48 h incubation and ammonium nitrate as nitrogen source were optimum conditions for biodemulsifier production. Furthermore, it was found that hydrophobic carbon sources like as liquid paraffin is not preferred as the sole carbon source while a combination of various carbon sources including liquid paraffin will increase demulsification efficiency of the biodemulsifier.

Conclusions

The appropriate potential of this biodemulsifier strengthens the possibility of its application in industries especially petroleum industry.
  相似文献   

13.

Aims

Plant growth forms can influence carbon cycling, particularly in carbon-rich ecosystems like northern peatlands; however, mechanistic evidence of this relationship is limited. Our aim was to determine if northern peatland plant growth forms alter belowground dissolved carbon chemistry and enhance carbon release through stimulated microbial metabolism.

Methods

We used replicated, peat monoliths populated exclusively by Sphagnum mosses, graminoids, or bare peat and quantified changes in belowground dissolved organic carbon chemistry, microbial metabolism, as well as respired CO2.

Results

The graminoid growth form was significantly distinct in belowground dissolved organic carbon chemistry with carbon compound lability 20 % and 11 % greater than bare peat and Sphagnum moss respectively. The labile dissolved organic carbon stimulated the microbial community, as indicated by greater microbial metabolic activity and richness values in conjunction with 50 % higher respired CO2 fluxes under the graminoid treatment.

Conclusions

Our results provide mechanistic evidence that peatland plant growth forms can drive carbon cycling processes by altering dissolved organic carbon chemistry to prompt cascading effects on the microbial community and carbon release — trends suggestive of microbial priming effects. Should climate change increase graminoid prevalence at the expense of Sphagnum moss northern peatland carbon store stability may be threatened by this mechanism.
  相似文献   

14.

Objectives

Power production characteristics and substrate concentration dependence of voltage have been investigated together with the determination of kinetic constants in two-chambered mediator-less microbial fuel cells (MFC) for acetate and peptone substrates.

Results

At 500 mg DOC l?1 (dissolved organic carbon), power densities normalized to the anode surface of 112 mW m?2 with acetate and 114 mW m?2 with peptone as electron donor were attained by applying cathodes with a Pt catalyst layer. Related anode surface specific substrate removal rate was 44 g DOC m?2 h?1 for acetate and 52 g DOC m?2 h?1 for peptone. Substrate concentration dependency of the voltage suggests Monod-like kinetics with extremely low, <1 mg DOC l?1, half saturation constants and with final DOC concentrations of 6–10 mg l?1.

Conclusions

Acetate and peptone are equivalent substrates for the exoelectrogenic bacteria both from the point of view of biodegradation kinetics and power production characteristics.
  相似文献   

15.

Objectives

To degrade enzymatically bisphenol A (BPA) that causes serious environmental concerns and is difficult to be degraded by chemical or physical methods.

Results

BPA (150 mg l?1) was completely degraded by chloroperoxidase (CPO)/H2O2 within 7 min at room temperature, atmospheric pressure with the enzyme at 6 μg CPO ml?1. The degradation products were identified by HPLC–MS, which suggested involvement of multiple steps. Enzymatic treatment followed by existing bioremediation technologies (activated sludge) enhanced removal of COD from 9 to 54 %. Using an ecotoxicity evaluation with Chlorella pyrenoidosa, the degradation products had a lower toxicity than BPA.

Conclusion

BPA can be degraded rapidly and efficiently under mild conditions with chloroperoxidase at 6 μg ml?1. The degradation products had a lower toxicity than BPA.
  相似文献   

16.

Background and aims

Invasive plants have been associated with alterations to soil properties, functions, and organisms, with the potential to impact ecosystem processes. An observational study was conducted to determine how the invasive plant Frangula alnus affects soil microbial communities and biogeochemical processes in Wisconsin forests.

Methods

Paired invaded/non-invaded sites (n = 10), including high (n = 5) and low (n = 5) density invasions, were sampled in spring, summer, and fall. Soil was analyzed for extractable and total nitrogen (N), N mineralization rate, total carbon, microbial biomass carbon and N, and microbial community structure using terminal restriction fragment length polymorphisms.

Results

Linear regression analysis with robust variance estimation revealed higher N mineralization rates in invaded sites than non-invaded sites in summer, and in high density invaded sites than non-invaded sites overall (p < 0.05). There was not a corresponding increase in extractable N. No differences between invaded and non-invaded sites were observed for other variables.

Conclusions

Nitrogen-rich F. alnus leaf litter (3.2 % of dry mass) may contribute to elevated N mineralization at these sites, though pre-existing conditions may be responsible. Results suggest that F. alnus alters N cycling but has little impact on soil carbon pools and microbial communities.
  相似文献   

17.

Objectives

To evaluate the transduction efficiency of human umbilical cord-derived, late endothelial progenitor cells late (HUCB-late EPCs) with nine recombinant adeno-associated virus (rAAV) serotypes and the ability of proliferation and migration of the cells after transduction.

Results

rAAV2 and rAAV6 showed a greater ability than other serotypes to transduce late EPCs (P < 0.05). After transduction, cell proliferation ability weakened (P < 0.05), but the ability of migration to stromal cell-derived factor (SDF-1) unchanged.

Conclusion

There is an advantage of choosing the optimal rAAV serotype as a gene vector to alter the biologic characteristics of late EPCs.
  相似文献   

18.

Objective

To examine the effect of SU9516, a cyclin-dependent kinase inhibitor, on the induction of tetraploid blastocyst formation in porcine embryos by parthenogenetic activation.

Results

Karyotype analysis of blastocysts showed that in the SU9516-treatment group 56% were tetraploid, whereas in the cytochalasin B (CB) group 67% were diploid. The level of maturation-promoting factor (MPF) in stimulated embryos treated with 10 µM SU9516 for 4 h was lower than in embryos treated with CB group (103 vs. 131 pg/ml). The mRNA expression levels of Nanog significantly increased in SU9516-treated embryos than CB group.

Conclusion

SU9516 can induce tetraploid blastocyst formation at high efficiency. SU9516 can significantly influence the in vitro developmental competence of porcine parthenogenetically activated embryos by influencing the level of MPF and the gene related apoptosis and pluripotency.
  相似文献   

19.

Objectives

To study the binding of pranlukast to hRKIP and its regulatory role in the Raf1/MEK/ERK signal pathway.

Results

NMR and fluorescence experiments demonstrated hRKIP could bind pranlukast with a binding constant of 1016 mM?1. Residues (Y81, S109 and Y181) on the conserved ligand-binding pocket of hRKIP played a crucial role in binding pranlukast, and their mutations reduced the binding affinity more than 85 %. Furthermore, 25 μM pranlukast could up-regulate the ERK phosphorylation by about 17 %.

Conclusion

Pranlukast may be used as a potential drug precursor for treating hRKIP involved diseases.
  相似文献   

20.

Aims

It has been increasingly recognized that only distal lower order roots turn over actively within the <2 mm fine root system of trees. This study aimed to estimate fine root production and turnover rate based on lower order fine roots and their relations to soil variables in mangroves.

Methods

We conducted sequential coring in five natural mangrove forests at Dongzhai Bay, China. Annual fine root production and turnover rate were calculated based on the seasonal variations of the biomass and necromass of lower order roots or the whole fine root system.

Results

Annual fine root production and turnover rate ranged between 571 and 2838 g m?2 and 1.46–5.96 yr?1, respectively, estimated with lower order roots, and they were increased by 0–30 % and reduced by 13–48 %, respectively, estimated with the whole fine root system. Annual fine root production was 1–3.5 times higher than aboveground litter production and was positively related to soil carbon, nitrogen and phosphorus concentrations. Fine root turnover rate was negatively related to soil salinity.

Conclusions

Mangrove fine root turnover plays a more important role than aboveground litter production in soil C accumulation. Sites with higher soil nutrients and lower salinity favor fine root production and turnover, and thus favor soil C accumulation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号