首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Octopamine- and dopamine-sensitive adenylate cyclases were studied in the brain of Locusta migratoria during its metamorphosis. In the adult brain the effects of octopamine and dopamine on adenylate cyclase were additive, suggesting the presence of separate populations of adenylate cyclase-linked receptors for octopamine and dopamine. There are no separate receptors for noradrenaline. Octopamine stimulates adenylate cyclase in both adult and larval brain; however, in adult brain octopamine is more potent than in larval brain. Dopamine stimulates adenylate cyclase activity only in adult brain. The sensitivity of adenylate cyclase to octopamine changes during the development of the animal. Phentolamine and cyproheptadine are potent antagonists of octopamine-stimulated adenylate cyclase, while propranolol has a weak effect. No cytosol factor which would modulate either basal or octopamine-stimulated adenylate cyclase was found. The effect of GTP and octopamine on adenylate cyclase was synergistic in adult brain but not in larval brain, while the effect of GppNHp and octopamine was synergistic in both adult and larval brains.  相似文献   

2.
An adenylate cyclase present in the brain of the moth Mamestra configurata Wlk. that is stimulated selectively by low (micromolar) concentrations of octopamine has been characterized with respect to several properties. The optimum pH, optimum ATP:Mg2+ ratio, the concentration of ATP required for half-maximal and maximal reaction velocity, metal ion specificity, effect of NaF, and effects of GTP and 5'-guanylylimidodiphosphate were in general similar to those of catecholamine-sensitive adenylate cyclases from various regions of mammalian brain. However, ethylene glycol bis-(beta-aminoethyl ether)-N,N-tetraacetic acid (EGTA), a calcium chelator, stimulated both basal and octopamine-sensitive enzyme activity in the insect brain, whereas in mammalian brain EGTA is usually observed to inhibit basal activity but not catecholamine-stimulated activity. Adenylate cyclase activity of the 47,000 g particulate fraction of the insect brain was almost undetectable in the absence of added GTP. Addition of saturating concentrations (100 micrometer) of GTP to the particles restored about 30% of the basal and octopamine-sensitive enzyme activity present in the homogenate. Addition of 100,000 g supernatant to the particles doubled both basal and octopamine-sensitive enzyme activity in the presence of saturating concentrations of GTP, indicating that in addition to GTP, a cytosolic factor(s) is necessary for enhanced adenylate cyclase activity.  相似文献   

3.
《Insect Biochemistry》1990,20(3):239-244
The octopamine-sensitive adenylate cyclase associated with haemocytes of the American cockroach, Periplaneta americana, has been used as a model system with which to study desensitization of the octopamine receptor. Preincubation of the haemocytes with octopamine results in a large decrease in subsequent maximal stimulation of cyclic AMP production by octopamine with little change in affinity of the receptor for the agonist. This effect of preincubation is dependent upon the concentration of octopamine in the preincubation media and on the duration of exposure. The attenuation appears to be a receptor-mediated event rather than an artifact of the preincubation. Octopamine receptor agonists (octopamine, synephrine, N-demethylchlordimeform) induce desensitization while biogenic amines with poor octopamine receptor affinity (dopamine, serotonin, norepinephrine) are without affect. In contrast, the octopamine receptor antagonist, phentolamine, appears to enhance subsequent stimulation by octopamine. The attenuation of octopamine stimulation of adenylate cyclase is conserved in broken-cell preparations with no alteration of responses to NaF or forskolin. Incubation of the cells with dibutyryl cyclic AMP or forskolin does not induce desensitization. The data indicate that the OA receptors coupled to AC in cockroach haemocytes undergo an homologous desensitization in response to exposure to agonists.  相似文献   

4.
Adenylate cyclase from a spruce budworm cell line, IBRI-Cfl, is activated by octopamine (Ka = 50 microM), guanine nucleotides and sodium fluoride but not by forskolin. In addition, forskolin does not potentiate the octopamine-sensitive response. To our knowledge, this is the first published report of a hormone-sensitive adenylate cyclase, with a functional guanine nucleotide regulatory protein, that is insensitive to forskolin both in intact cells and washed membrane preparations.  相似文献   

5.
The average level of VIP was found to be 17 pmol/g wet weight in the brain of the newborn rat. This level ramained constant during the first two weeks after birth then increased progressively to 40 pmol/g wet weight at 20 days, a value comparable to that found in adult animals. VIP was already able to stimulate brain membrane adenylate cyclase activity at birth. The stimulation with 10?6 M VIP allowed a 2.5-fold increase in basal activity in membranes from 1 to 14-days-old pups as compared to a 1.7-fold stimulation in membranes from adult brain. The apparent activation constant for VIP adenylate cyclase stimulation was 4.10?7 M at all ages. The efficiency of VIP activation amounted to as much as 70% of that of fluoride at birth and to 35% only of fluoride activation in brain membranes from adult rats.  相似文献   

6.
Adenylate cyclase in Drosophila melanogaster heads is stimulated 5-6-fold by low concentrations of octopamine. The octopamine stimulation is inhibited by low concentrations of the alpha-adrenergic ligands phentolamine and dihydroergotamine and of chlorpromazine, but not by low concentrations of the beta-antagonist propranolol and by the alpha-antagonist yohimbine. d-Tubocurarine enhances the octopamine effect. Tyramine, norepinephrine, and epinephrine also stimulate the cyclase, probably via the octopamine receptor. Serotonin and dopamine stimulate Drosophila adenylate cyclase 1.3-1.4-fold; at least the latter putative neurotransmitter seems to interact with a receptor distinct from the octopamine receptor. Prolonged incubation with dopamine in vitro abolishes adenylate cyclase basal activity as well as responsiveness to guanyl nucleotides, NaF, and putative neurotransmitters.  相似文献   

7.
Synthetic substance P stimulated adenylate cyclase activity in particulate preparations from rat and human brain.The concentration of substance P for half maximal stimulation in rat brain was 1.8 · 10−7 M.The stimulatory effect of substance P on the rat brain adenylate cyclase activity was 88% compared with 48% by noradrenalin, 163% by prostaglandin E1 and 184% by prostaglandin E2.Both the basal and substance P-stimulated adenylate cyclase activity in rat brain were inhibited by concentration of Ca2+ above 10−6 M.The chelating agent ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid at a concentration of 0.1 mM reduced the basal adenylate cyclase activity by 64% and eliminated the substance P-stimulated activity.The inhibition by ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid was completely reversed by increasing concentrations of Ca2+.  相似文献   

8.
Summary We have studied the effect of formamidines onDrosophila melanogaster. Low concentrations of formamidines are toxic to adultDrosophila. A mutant with reduced cAMP synthesis displays increased resistance to the toxin. Formamidines also reduce viability ofDrosophila eggs and retard imago eclosion. At sublethal concentrations, formamidines markedly affect the flies' behavior. Upon injection, the compounds increase muscle activity. Upon feeding, formamidines induce motor excitation, reduce phototaxis and impair olfactory learning without affecting the ability to recognize an olfactory cue. In vitro, two formamidines were found to inhibit octopamine-stimulated adenylate cyclase without affecting the basal activity of the enzyme, while a third one was found to stimulate adenylate cyclase; this stimulation was blocked by phentolamine and to a lesser degree by propranolol, thus resembling the effect of octopamine. The binding of [3H]octopamine toDrosophila head membranes was also inhibited. Taken together, our results indicate that formamidines interact with octopaminergic systems inDrosophila, exert both peripheral and central effects in the fly, and could be used to dissect the roles of octopamine in development and behavior, including behavioral plasticity. The results also suggest that formamidines could be used to select mutants in aminergic transmission and in the cAMP cascade.Abbreviations CDMF chlordimeform - DMPF N,N-dimethyl-N2-(2,4-dimethylphenyl) formamidine  相似文献   

9.
Forskolin, a diterpene that exerts several pharmacological effects, activates adenylate cyclase in brain and in some other mammalian tissues. Properties of forskolin activation of adenylate cyclase from central nervous system of the dipterous Ceratitis capitata are described. The interaction of forskolin with the insect adenylate cyclase system was studied by evaluating its effect on metal-ATP kinetics, protection against thermal inactivation, membrane fluidity and enzyme modulation by fluoride, guanine nucleotides, octopamine, and ADP-ribosylation by cholera toxin. The diterpene stimulated basal enzyme activity both in membranes and Triton X-100-solubilized preparations, apparently devoid of functional regulatory unit, this effect being rapidly reversed by washing the membranes. An increase of Vmax accounts for the activation of soluble and membrane adenylate cyclase preparations by forskolin, whereas the affinity of the enzyme for the substrate was not affected. Forskolin apparently protects the membrane enzyme from thermal inactivation, and at concentrations that promote the enzyme activity the diterpene does not alter membrane microviscosity. Forskolin does not appear to alter the sensitivity of insect adenylate cyclase to sodium fluoride, guanine nucleotide, or regulatory subunit ADP ribosylated by cholera toxin, the combined effect of these factors with the diterpene resulting in a nearly additive enzymatic activation. However, forskolin blocks the octopamine stimulatory input. Results obtained with the insect adenylate cyclase system are discussed and compared to what is known about mammalian systems to propose a mechanism of enzyme activation by forskolin.  相似文献   

10.
1. Inhibition of octopamine-stimulated adenylate cyclase was studied in the optic lobe of Octopus vulgaris.2. The octopamine antagonist, mianserin, and the dopamine D2 agonists, PPHT and metergoline, induced dose-dependent inhibition of octopamine-stimulated adenylate cyclase activity.3. The binding of the tritiated benzazepine neuroleptic YM-09151-2 to octopus membranes and the displacement of [3H]YM-09151-2 by PPHT, metergoline and spiperone were consistent with the presence of a D2-like dopamine receptor in the octopus optic lobe.4. The conclusion is drawn that octopamine-stimulated adenylate cyclase in the octopus is negatively regulated by a dopamine D2-like receptor.  相似文献   

11.
The effects of male accessory-gland extracts on the myogenic contractions and the adenylate cyclase activity of the oviduct of Locusta migratoria have been examined. The extracts stimulated first the frequency and the amplitude, then the tonus of the oviduct contractions in dose-dependent and reversible ways. They also stimulated the adenylate cyclase activity of oviduct disrupted-cell preparations. Extracts of opalescent glands (one of the 15 male accessory glands) gave similar results with only a quantitative difference. The tonus response is probably independent of the adenylate cyclase activity because octopamine and forskolin did not mimic this effect, and also because phentolamine was unable to inhibit the effect.Frequency and mainly amplitude responses can be induced through an adenylate cyclase-dependent receptor as shown by the similitude of actions with octopamine and forskolin. However, since the effects on the adenylate cyclase activity of octopamine and the accessory-gland extracts were cumulative, we concluded that these compounds are acting on two discrete types of receptors. All these results suggest that male accessory-gland secretions directly act upon the oviduct, in one case through adenylate cyclase-dependent receptors.  相似文献   

12.
Octopamine exerts its effects in insects through interaction with at least two classes of receptors, designated octopamine-1 and octopamine-2. Octopamine-2 receptors are positively coupled to adenylate cyclase, while octopamine-1 receptors are not coupled to this enzyme system. Ceratitis capitata brain appears to have octopamine receptors as unique aminergic receptors coupled to adenylate cyclase. These receptors show some pharmacological analogies with respect to octopamine-2 receptors, however they should constitute a new class of octopamine receptors. C. capitata brain octopamine receptors have also been characterized by [3H]octopamine-binding studies, exhibiting similar regulatory mechanisms to other receptors coupled to adenylate cyclase activation.  相似文献   

13.
Old mice reared on regular diet show reduced motor activity, decreased basal adenylate cyclase, and increased MAO activities compared to adults. Brain DDC and COMT activities, DA, NE levels and DA-stimulated adenylate cyclase remained unchanged. By contrast, mice fed levodopa for life did not develop decreased motor activity with aging, lived about 50% longer, had slightly elevated whole brain DA and NE levels and failed to develop the expected rise in MAO activity with aging. Levodopa did not alter the number of dopaminergic and muscarinic cholinergic receptors or the adenylate cyclase activity in the striatum during aging. On levodopa, hepatic and renal DA, dopa, and HVA increased but the latter two returned to basal levels by mid life. In liver, DDC was unchanged but MAO tended to be higher in levodopa-fed mice. Thus, motor impairment is an age-related phenomenon in mice associated with selective alterations in brain dopaminergic systems, which may be prevented by dietary levodopa. Extracerebral tissues, through possibly adaptive metabolic mechanisms, play a significant role in regulating brain catecholamines during chronic administration of large doses of levodopa.  相似文献   

14.
J W Gole  G L Orr  R G Downer 《Life sciences》1983,32(26):2939-2947
Chlordimeform (CDM) and demethylchloridimeform (DCDM) mimic the action of octopamine in elevating adenylate cyclase activity in intact nerve cords of the American cockroach, Periplaneta americana. At a concentration of 1 x 10(-5)M, DCDM (13.5x increase within 20 minutes) is a more potent effector of the response than CDM (3x increase within 20 minutes), but both compounds show less efficacy than octopamine (23.5x increase within 15 minutes). DCDM also mimics the stimulatory effect of octopamine on adenylate cyclase activity in nerve cord homogenates whereas CDM has no demonstrable effect on this preparation. The octopamine- and DCDM-induced responses are competitively inhibited by phentolamine (1 x 10(-6)M) and cyproheptadine (1 x 10(-6)M) but not by propranolol (1 x 10(-6)M). DCDM and CDM inhibit the octopamine-induced activation of adenylate cyclase by 33% and 44% respectively. The results are discussed in light of the proposal that DCDM serves as a partial agonist and CDM as an antagonist of the octopamine receptor.  相似文献   

15.
1. DFCD or 3-(2,6-diisopropyl-4-phenoxyphenyl)-1-tert-butylcarbodiimide, a toxic metabolite of the thiourea acaricide/insecticide diafenthiuron, stimulated adenylate cyclase activity in preparations from heads of adult diamondback moths, Ptutella xylostella (L.).2. Depending upon assay conditions, DFCD gave a biphasic response with Ka, values of 0.025 and 1.25 μM for high and low affinity components, respectively, or a monophasic response with a Ka of 0.4 μM.3. Studies with potential agonists and antagonists suggested that octopamine-sensitive (Ka 7.5 μM) and dopamine-sensitive (Ka, 1.0μM) adenylate cyclases were present.4. At maximally effective concentrations, the activity of DFCD was nonadditive to that of octopamine or dopamine.5. It appeared that DFCD was binding to octopamine- and dopamine-sensitive adenylate cyclases and that affinity of the carbodiimide was higher for the former than for the latter.6. These actions on biogenic amine-sensitive adenylate cyclases likely are involved in the toxicity of diafenthiuron to diamondback moths.  相似文献   

16.
Changes in activities of plasma membrane enzymes during liver regeneration may be related to the maintenance of hepatic function or to the regulation of cell proliferation. Plasma membranes were isolated from rat livers at various times after partial hepatectomy, and the specific activities of alkaline phosphatase, (Na+ + K+)-ATPase, leucine aminopeptidase, 5′-nucleotidase, and adenylate cyclase (basal and with glucagon or epinephrine) were measured. Alkaline phosphatase and (Na+ + K+)-ATPase activity increased 3.6-fold and 2-fold respectively, during the first 48 h after partial hepatectomy. The time of onset and duration of change suggest that these increases in activity are involved in the maintenance of bile secretion. Decreases in leucine aminopeptidase activity at 48–108 h and in 5′-nucleotidase activity at 12–24 h were observed, which may be involved in the restoration of protein and accumulation of RNA. The basal activity of adenylate cyclase increased after partial hepatectomy. The response of adenylate cyclase to epinephrine showed a transitory increase between 36 and 108 h after surgery, while the response to glucagon was decreased by approximately 50% at all time points through 324 h after surgery. These changes in the hormone responsiveness of adenylate cyclase are similar to those previously observed in fetal and preneoplastic liver.  相似文献   

17.
Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons.  相似文献   

18.
  • 1.1. Adenylate cyclase activity was assayed in the optic lobe of Octopus vulgaris.
  • 2.2. Both octopamine and dopamine stimulate the octopus adenylate cyclase, apparently by competing with the same receptor site.
  • 3.3. (±)-2-Amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene-HBr (6,7-ADTN) and a number of phenylethanolamine derivatives stimulate the octopus adenylate cyclase activity.
  • 4.4. The dopamine D-1 antagonists R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-HCl (SCH-23390) and (±)-7-bromo-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-HCl (SKF-83566) are unable to antagonize the effects of dopamine and octopamine, and similarly ineffective is the agonist (±)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol-HCl (SKF-38393).
  • 5.5. No detectable binding of labelled SCH-23390 occurs on membrane preparations from octopus optic lobe.
  相似文献   

19.
The postnatal development of skeletal muscle is accompanied by an increased capacity for glycogenolysis and anaerobic glycolysis. In the present study, regulatory features of cAMP synthesis were examined in neonatal and adult rabbit sarcolemmal membranes. Adult sarcolemma exhibited a 3-, 6-, and 10-fold greater adenylate cyclase activity than neonate for basal, NaF, and isoproterenol plus GTP, respectively. The Km for activation by isoproterenol was 1.4 X 10(-8) M and 6 X 10(-8) M for GTP. The number of beta-receptors was similar (0.9-1.2 pmol/mg). 10 microM GTP shifted isoproterenol EC50 from 1 X 10(-8) M to 1 X 10(-7) M in adult; neonatal agonist affinity was unaffected by GTP. Cholera toxin stimulated adenylate cyclase activity 2-fold and catalyzed 32P ribosylation of a Mr = 42,000 peptide in adult sarcolemma; both activities were low or absent in neonate. Isoproterenol-stimulated GTPase activity was elevated 4-fold in adult compared to neonatal sarcolemma. Mn2+ ion-stimulated basal activity, an indicator of catalytic function of adenylate cyclase, was also elevated in adult. Together, these findings suggest that the development of catecholamine-sensitive cAMP synthesis in muscle is governed by the coordinate expression of the regulatory and catalytic proteins of adenylate cyclase, but not the beta-receptor.  相似文献   

20.
Adenylate cyclase activation by GTP and octopamine as well as basal activity (in the presence of Mg2+) have been studied as a function of membrane structure in plasma membranes from brain of the dipterous Ceratitis capitata. Benzyl alcohol and lidocaine, but not phenobarbital, inhibited the three activities to the same extent. Triton X-100-solubilized adenylate cyclase was also inhibited by benzyl alcohol and lidocaine, but not by phenobarbital. Results could be explained by an effect on the catalytic unit lipid environment, which would be maintained after solubilization, counteracting the effect of these drugs to facilitate lateral diffusion and coupling of adenylate cyclase components in the lipid bilayer. The observation that the insect adenylate cyclase is relatively insensitive to changes in bulk bilayer fluidity is strengthened by the absence of effect of phenobarbital on enzyme activities. Indeed, this compound was as active as lidocaine or benzyl alcohol in increasing bulk membrane fluidity. The response of C. capitata adenylate cyclase to changes in membrane fluidity is different from that recorded in mammalian systems. This may be functionally important and result from the fact that insects are not warm-blooded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号