首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alkali-stable phosphorylation of proteins, particularly phosphotyrosine and phosphohistidine, is an important phenomenon in cells. In the case of phosphohistidine and some other phosphoamino acids, the phosphorylation is acid-labile and in these cases studies have been severely limited by the absence of a rapid assay suitable for acid-labile phosphorylation. The assay presented here involves a conventional kinase assay reaction followed by mild alkaline hydrolysis and adsorption of the product to washed Nytran paper at high pH. After further washing, at pH 9, the radioactivity on the papers is determined by liquid scintillation counting. Hence, acid-labile phosphorylation is preserved. The assay is selective for alkali-stable phosphorylation but not fully specific, mainly due to the need to balance the severity of the partial alkaline hydrolysis with the stability of the protein-peptide bonds. The assay has been used for the purification and characterization of a protein histidine kinase from Saccharomyces cerevisiae.  相似文献   

2.
Protein histidine phosphorylation is well established as an important part of signalling systems in bacteria, fungi and plants and there is growing evidence of its role in mammalian cell biology. Compared to phosphoserine, phosphothreonine and phosphotyrosine, phosphohistidine is relatively labile, especially under the acidic conditions that were developed to analyse protein phosphorylation. In recent years, there has been an increasing impetus to develop specific methods for the analysis of histidine phosphorylation and assay of histidine kinase activity. Most recently attention has focussed on the application of mass spectrometry to this end. This review provides an overview of methods available for the detection and analysis of phosphohistidine in phosphoproteins, with particular emphasis on the application of mass spectrometric techniques.  相似文献   

3.
A high salt nuclear extract from the true slime mold Physarum polycephalum was used as a source of kinase activity for the incubation of calf thymus histones with [gamma-32P]ATP. A major proportion of the 32P incorporated into histones was acid-labile and alkali-stable. The nature of the alkali-stable phosphorylated component was analyzed by subjecting the phosphorylated protein to total alkaline hydrolysis and separating the resultant phosphoamino acids by anion exchange chromatography. The 32P-labeled material co-chromatographed with phosphohistidine standards and did not co-chromatograph with phosphoserine, phosphothreonine, or phosphotyrosine standards. In similar experiments using reversed phase high-performance liquid chromatography to separate the phosphoamino acids, the 32P-labeled phosphoamino acid behaved like the 1-isomer of phosphohistidine, in not being retained by the column, and unlike 3-phosphohistidine, phosphoserine, phosphothreonine, phosphotyrosine, and phosphoarginine, which were all retained on the column. Histone H4 was a good substrate for the histidine kinase activity and the location of the phosphorylated histidine residue was probed by peptide mapping using chymotrypsin or V8 protease. Both maps were consistent with labeling of histidine 75 and inconsistent with labeling of histidine 18. The data show that Physarum nuclei contain a major kinase activity which produces phosphohistidine. The methods we have developed for studying this kinase activity provide the basis for a complete characterization of the structure and function of the Physarum enzyme and can be applied to the study of similar kinase activities in other systems.  相似文献   

4.
An enzyme of molecular weight 32,000 comprising a single subunit has been isolated from whole cell extracts of the yeast Saccharomyces cerevisiae. In vitro, the enzyme transfers the gamma phosphate of ATP to a protein substrate, histone H4, to produce an alkali-stable phosphorylation. Modification of the substrate histidine with diethylpyrocarbonate prevented phosphorylation. Phosphoamino acid analysis of the phosphorylated substrate showed the presence of 1-phosphohistidine. Hence, the isolated enzyme is a protein histidine kinase. A novel assay for acid-labile alkali-stable protein phosphorylation was used in the purification of the kinase activity to a final specific activity of 2,700 nmol/15 min/mg. The purified enzyme phosphorylates specifically histidine 75 in histone H4 and does not phosphorylate histidine 18 nor histidine residues in any other core histone. Steady state kinetic data are consistent with an ordered sequential reaction with Km values for Mg-ATP and histone H4 of 60 and 17 microM, respectively. The protein histidine kinase requires a divalent cation such as Mg2+, Co2+, or Mn2+ but will not use Ca2+, Zn2+, Cu2+, Fe2+, spermine, or spermidine. This is the first purification of an enzyme that catalyzes N-linked phosphorylation in proteins.  相似文献   

5.
For the first time, to our knowledge, a nucleoside diphosphate kinase (NDPK) has been purified from plant mitochondria (Pisum sativum L.). In intact pea leaf mitochondria, a 17.4-kDa soluble protein was phosphorylated in the presence of EDTA when [gamma-32P]ATP was used as the phosphate donor. Cell fractionation demonstrated that the 17.4-kDa protein is a true mitochondrial protein, and the lack of accessibility to EDTA of the matrix compartment in intact mitochondria suggested it may have an intermembrane space localization. The 17.4-kDa protein was purified from mitochondrial soluble proteins using ATP-agarose and anion exchange chromatography. Amino-acid sequencing of two peptides, resulting from a trypsin digestion, revealed high similarity with the conserved catalytic phosphohistidine site and with the C-terminal of NDPKs. Acid and alkali treatments of [32P]-labelled pea mitochondrial NDPK indicated the presence of acid-stable as well as alkali-stable phosphogroups. Thin-layer chromatography experiments revealed serine as the acid-stable phosphogroup. The alkali-stable labelling probably reflects phosphorylation of the conserved catalytic histidine residue. In phosphorylation experiments, the purified pea mitochondrial NDPK was labelled more heavily on serine than histidine residues. Furthermore, kinetic studies showed a faster phosphorylation rate for serine compared to histidine. Both ATP and GTP could be used as phosphate donor for histidine as well as serine labelling of the pea mitochondrial NDPK.  相似文献   

6.
Although protein histidine phosphorylation is estimated to account for about 6% of total protein phosphorylation in eukaryotes, knowledge on histidine phosphorylation and dephosphorylation is still limited. Recently, a few reports have appeared on a mammalian 14-kDa phosphohistidine phosphatase, also named protein histidine phosphatase. Molecular cloning of the protein has opened possibilities for exploring its properties and physiological role. In the present work, we have searched for potential active site residues in the human phosphohistidine phosphatase by point mutations of conserved histidine and arginine residues to alanine. When assayed by the phosphohistidine-containing peptide succinyl-Ala-His(P)-Pro-Phe-p-nitroanilide, mutants H53A and H102A showed no detectable activity. Compared to the wild-type recombinant enzyme, the specific activity of mutant R45A was decreased by one order of magnitude, that of mutant R78A was decreased by about 30%, while that of mutant H81A was essentially unchanged. These results will facilitate future studies of the reaction mechanism, substrate binding, and molecular structure of the phosphohistidine phosphatase.  相似文献   

7.
摘要:蛋白质磷酸化是一种可逆的翻译后修饰,这种翻译后修饰可以改变蛋白质的构象,进而使蛋白质活化或者失活。组氨酸磷酸化在细胞信号传导过程中发挥着重要作用,且组氨酸磷酸化与人类某些疾病密切相关,然而,由于组氨酸磷酸化含有P-N键,具备不稳定性,有关于组氨酸磷酸化的报道远远少于其它磷酸化的报道。本综述系统的总结了组氨酸磷酸化在生物学过程中的作用,以及近些年取得的重要研究进展,以期对深入研究组氨酸磷酸化提供理论参考。  相似文献   

8.
Shen Y  Kim JI  Song PS 《Biochemistry》2006,45(6):1946-1949
Arabidopsis nucleoside diphosphate kinase 2 (NDPK2) is a component in the phytochrome-mediated light signaling. In the present study, its autophosphorylation was investigated. Acid-stable and alkali-stable phosphorylated residues were analyzed under two different conditions. Results revealed that NDPK2 is phosphorylated only on its active histidine residue His197 and the presence of serine/threonine phosphorylation is an experimental artifact due to the harsh condition applied in the treatment of the phosphorylated protein sample. To resolve the controversy of whether serine/threonine phosphorylation of NDPK occurs as has been suggested by other NDPK studies, NDPK2 putative phosphorylation site mutants were generated and examined. No serine/threonine phosphorylation was identified in NDPK2 or implicated in its enzymatic activity. Further studies indicated that the low enzymatic activity and autophosphorylation level of NDPK2 mutant S199A are shown to be due to a damaged H-bonding with the active histidine residue His197 in the nucleotide-binding pocket. In addition, NDPK2 Kpn loop mutant T182A was found to possess an extremely low enzymatic activity and almost no autophosphorylation, suggesting the importance of the oligomeric states of NDPK2 in NDPK2 functioning.  相似文献   

9.
Zu XL  Besant PG  Imhof A  Attwood PV 《Amino acids》2007,32(3):347-357
Summary. Protein histidine phosphorylation is now recognized as an important form of post-translational modification. The acid-lability of phosphohistidine has meant that this phosphorylation has not been as well studied as serine/threonine or tyrosine phosphorylation. We show that phosphohistidine and phosphohistidine-containing phosphopeptides derived from proteolytic digestion of phosphohistone H4 are detectable by ESI-MS. We also demonstrate reverse-phase HPLC separation of these phosphopeptides and their detection by MALDI-TOF-MS.  相似文献   

10.
K H Pesis  Y Wei  M Lewis  H R Matthews 《FEBS letters》1988,239(1):151-154
Nuclear extracts of the true slime mold, Physarum polycephalum, show protein histidine kinase activity towards exogenous histones [(1985) J. Biol. Chem. 260, 16106-16113]. Physarum microplasmodia were labeled with [32P]phosphate in vivo and two basic proteins containing alkali-stable phosphate were detected. The labeled proteins comigrated with Physarum histones H1 (approximately) and H2A and phosphoamino acid analysis showed that each protein contained [32P]-phosphohistidine. The H2A-like protein was also labeled in isolated nuclei incubated with [35S]thio-ATP. We conclude that some Physarum nuclear proteins contain phosphohistidine.  相似文献   

11.
Protein histidine phosphorylation in eukaryotes has been sparsely studied compared to protein serine/threonine and tyrosine phosphorylation. In an attempt to rectify this by probing porcine liver cytosol with the phosphohistidine-containing peptide succinyl-Ala-His(P)-Pro-Phe-p-nitroanilide (phosphopeptide I), we observed a phosphatase activity that was insensitive towards okadaic acid and EDTA. This suggested the existence of a phosphohistidine phosphatase different from protein phosphatase 1, 2A and 2C. A 1000-fold purification to apparent homogeneity gave a 14-kDa phosphatase with a specific activity of 3 micro mol.min-1.mg-1 at pH 7.5 with 7 micro m phosphopeptide I as substrate. Partial amino-acid sequence determination of the purified porcine enzyme by MS revealed similarity with a human sequence representing a human chromosome 9 gene of hitherto unknown function. Molecular cloning from a human embryonic kidney cell cDNA-library followed by expression and purification, yielded a protein with a molecular mass of 13 700 Da, and an EDTA-insensitive phosphohistidine phosphatase activity of 9 micro mol.min-1.mg-1 towards phosphopeptide I. No detectable activity was obtained towards a set of phosphoserine-, phosphothreonine-, and phosphotyrosine peptides. Northern blot analysis indicated that the human phosphohistidine phosphatase mRNA was present preferentially in heart and skeletal muscle. These results provide a new tool for studying eukaryotic histidine phosphorylation/dephosphorylation.  相似文献   

12.
Posttranslational phosphorylation of proteins is an important event in many cellular processes. Whereas phosphoesters of serine, threonine and tyrosine have been extensively studied, only limited information is available for other amino acids modified by a phosphate group. The formation of phosphohistidine residues in proteins has been discovered in prokaryotic organisms as well as in eukaryotic cells. The ability to biochemically analyze phosphohistidine residues in proteins, however, is severely hampered by its extreme lability under acidic conditions. In our studies we have found that by replacing the phosphate linked to the histidine residue with a thiophosphate, a phosphohistidine derivative with increased stability is formed. This allows the analysis of phosphohistidine-containing proteins by established biochemical techniques and will greatly aid in the investigation of the role of this posttranslational modification in cellular processes.  相似文献   

13.
The nucleoside diphosphate kinase (NDP kinase) from Myxococcus xanthus has been purified to homogeneity and crystallized (J. Munoz-Dorado, M. Inouye, and S. Inouye, J. Biol. Chem. 265:2702-2706, 1990). In the presence of ATP, the NDP kinase was autophosphorylated. Phosphoamino acid analysis was carried out after acid and base hydrolyses of phosphorylated NDP kinase. It was found that the protein was phosphorylated not only at a histidine residue but also at a serine residue. Replacement of histidine 117 with a glutamine residue completely abolished the autophosphorylation and nucleotide-binding activity of the NDP kinase. Since histidine 117 is the only histidine residue that is conserved in all known NDP kinases so far characterized, the results suggest that the phosphohistidine intermediate is formed at this residue during the transphosphorylation reaction from nucleoside triphosphates to nucleoside diphosphates. Preliminary mutational analysis of putative ATP-binding sites is also presented.  相似文献   

14.
Focus on phosphohistidine   总被引:1,自引:0,他引:1  
Summary. Phosphohistidine has been identified as an enzymic intermediate in numerous biochemical reactions and plays a functional role in many regulatory pathways. Unlike the phosphoester bond of its cousins (phosphoserine, phosphothreonine and phosphotyrosine), the phosphoramidate (P–N) bond of phosphohistidine has a high ΔG° of hydrolysis and is unstable under acidic conditions. This acid-lability has meant that the study of protein histidine phosphorylation and the associated protein kinases has been slower to progress than other protein phosphorylation studies. Histidine phosphorylation is a crucial component of cell signalling in prokaryotes and lower eukaryotes. It is also now becoming widely reported in mammalian signalling pathways and implicated in certain human disease states. This review covers the chemistry of phosphohistidine in terms of its isomeric forms and chemical derivatives, how they can be synthesized, purified, identified and the relative stabilities of each of these forms. Furthermore, we highlight how this chemistry relates to the role of phosphohistidine in its various biological functions.  相似文献   

15.
The existence of protein kinases, known as histidine kinases, which phosphorylate their substrates on histidine residues has been well documented in bacteria and also in lower eukaryotes such as yeast and plants. Their biological roles in cellular signalling pathways within these organisms have also been well characterised. The evidence for the existence of such enzymes in mammalian cells is much less well established and little has been determined about their cellular functions. The aim of the current review is to present a summary of what is known about mammalian histidine kinases. In addition, by consideration of the chemistry of phosphohistidine, what is currently known of some mammalian histidine kinases and the way in which they act in bacteria and other eukaryotes, a general role for mammalian histidine kinases is proposed. A histidine kinase phosphorylates a substrate protein, by virtue of the relatively high free energy of hydrolysis of phosphohistidine the phosphate group is easily transferred to either a small molecule or another protein with which the phosphorylated substrate protein specifically interacts. This allows a signalling process to occur, which may be downregulated by the action of phosphatases. Given the known importance of protein phosphorylation to the regulation of almost all aspects of cellular function, the investigation of the largely unexplored area of histidine phosphorylation in mammalian cells is likely to provide a greater understanding of cellular action and possibly provide a new set of therapeutic drug targets.  相似文献   

16.
Phosphorylation of histone H4 on one or both of its two histidine residues has been known to occur in liver cells for nearly 40?years and has been associated with proliferation of hepatocytes during regeneration of the liver following mechanical damage. More recently, large increases in histone H4 histidine kinase activity have been found to occur associated with proliferation and differentiation of liver progenitor cells following chemical damage that prevents hepatocyte proliferation. In addition, it has been shown this histone H4 histidine kinase activity is elevated nearly 100-fold in human foetal liver and several hundredfold in hepatocellular carcinoma tissue compared with normal adult liver. In the present paper, we review what is currently known about histone H4 histidine phosphorylation, the kinase(s) responsible and the phosphatases capable of catalysing its dephosphorylation, and briefly summarize the techniques used to detect and measure the histidine phosphorylation of histone H4 and the corresponding kinase activity.  相似文献   

17.
Histidine phosphorylation is important in prokaryotes and occurs to the extent of 6% of total phosphorylation in eukaryotes. Nevertheless phosphohistidine residues are not normally observed in proteins due to rapid hydrolysis of the phosphoryl group under acidic conditions. Many rapid processes employ phosphohistidines, including the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS), the bacterial two-component systems and reactions catalyzed by enzymes such as nucleoside diphosphate kinase and succinyl-CoA synthetase. In the PTS, the NMR structure of the phosphohistidine moiety of the phosphohistidine-containing protein was determined but no X-ray structures of phosphohistidine forms of PTS proteins have been elucidated. There have been crystal structures of a few phosphohistidine-containing proteins determined: nucleoside diphosphate kinase, succinyl-CoA synthetase, a cofactor-dependent phosphoglycerate mutase and the protein PAE2307 from the hyperthermophilic archaeon Pyrobaculum aerophilum. A common theme for these stable phosphohistidines is the occurrence of ion-pair hydrogen bonds (salt bridges) involving the non-phosphorylated nitrogen atom of the histidine imidazole ring with an acidic amino acid side chain.  相似文献   

18.
Protein phosphorylation is one of the most ubiquitous and important types of post-translational modification for the regulation of cell function. The importance of two-component histidine kinases in bacteria, fungi and plants has long been recognised. In mammals, the regulatory roles of serine/threonine and tyrosine kinases have attracted most attention. However, the existence of histidine kinases in mammalian cells has been known for many years, although little is still understood about their biological roles by comparison with the hydroxyamino acid kinases. In addition, with the exception of NDP kinase, other mammalian histidine kinases remain to be identified and characterised. NDP kinase is a multifunctional enzyme that appears to act as a protein histidine kinase and as such, to regulate the activation of some G-proteins. Histone H4 histidine kinase activity has been shown to correlate with cellular proliferation and there is evidence that it is an oncodevelopmental marker in liver. This review mainly concentrates on describing recent research on these two types of histidine kinase. Developments in methods for the detection and assay of histidine kinases, including mass spectrometric methods for the detection of phosphohistidines in proteins and in-gel kinase assays for histone H4 histidine kinases, are described. Little is known about inhibitors of mammalian histidine kinases, although there is much interest in two-component histidine kinase inhibitors as potential antibiotics. The inhibition of a histone H4 histidine kinase by genistein is described and that of two-component histidine kinase inhibitors of structurally-related mammalian protein kinases. In addition, recent findings concerning mammalian protein histidine phosphatases are briefly described.  相似文献   

19.
Phosphorylation of isocitrate lyase in Escherichia coli   总被引:2,自引:0,他引:2  
E F Robertson  H C Reeves 《Biochimie》1989,71(9-10):1065-1070
Isocitrate lyase from Escherichia coli becomes phosphorylated in vitro by an endogenous kinase when partially purified extracts are incubated with [gamma-32P]ATP. Treatment of isocitrate lyase with histidine modifying reagents, and alkaline hydrolysis of in vitro phosphorylated enzyme indicated the presence of a phosphohistidine residue. Phosphorylation of isocitrate lyase can also occur in vivo, which indicates a possible regulatory significance of this modification. In addition to phosphorylation, isocitrate lyase is capable of incorporating label from both [alpha-32P]ATP and [14C]ATP suggesting that more than one type of covalent modification occurs on this enzyme. This report reviews the studies which have demonstrated the phosphorylation and modification of isocitrate lyase from Escherichia coli.  相似文献   

20.
Using peptides based on the amino acid sequences surrounding the two histidine residues in histone H4, we have investigated the kinetics of the phosphorylation and dephosphorylation reactions of their histidine residues, when reacted with potassium phosphoramidate, by 1H NMR. We have been able to estimate rate constants for the reactions and have shown that there are differences in the kinetics between the two peptides. The kinetics of hydrolysis of phosphoramidate was measured by 31P NMR and protein histidine phosphatase (PHP) was shown to catalyse the reaction. We have shown that the dephosphorylation of the phosphohistidine of the phosphopeptides is catalysed by PHP. In terms of substrate specificity, there is a small preference for 1-phosphohistidine compared to 3-phosphohistidine, although the rate accelerations for hydrolysis induced by the enzyme were 1100- and 33,333-fold, respectively. The kinetics of both the phosphorylation and dephosphorylation reactions depend on the amino acid sequence surrounding the histidine. PHP shows greater substrate specificity for the peptide whose sequence is similar to that around histidine 18 of histone H4. PHP was unable to catalyse the dephosphorylation of histone H4 that had been phosphorylated with a histone H4 histidine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号