首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene for staphylococcal enterotoxin type E (entE) was cloned from Staphylococcus aureus into plasmid vector pBR322 and introduced into Escherichia coli. A staphylococcal enterotoxin type E-producing E. coli strain was isolated. The complete nucleotide sequence of the cloned structural entE gene and the N-terminal amino acid sequence of mature staphylococcal enterotoxin type E were determined. The entE gene contained 771 base pairs that encoded a protein with a molecular weight of 29,358 which was apparently processed to a mature extracellular form with a molecular weight of 26,425. DNA sequence comparisons indicated that staphylococcal enterotoxins type E and A are closely related. There was 84% nucleotide sequence homology between entE and the gene for staphylococcal enterotoxin type A; these genes encoded protein products that had 214 (83%) homologous amino acid residues (mature forms had 188 [82%] homologous amino acid residues).  相似文献   

2.
The glgP gene, which codes for glycogen phosphorylase, was cloned from a genomic library of Escherichia coli. The nucleotide sequence of the glgP gene contained a single open reading frame encoding a protein consisting of 790 amino acid residues. The glgP gene product, a polypeptide of Mr 87,000, was confirmed by SDS-polyacrylamide gel electrophoresis. The deduced amino acid sequence showed that homology between glgP of E. coli and rabbit glgP, human glgP, potato glgP, and E. coli malP was 48.6, 48.6, 42.3, and 46.1%, respectively. Within this homologous region, the active site, glycogen storage site, and pyridoxal-5'-phosphate binding site are well conserved. The enzyme activity of glycogen phosphorylase increased after introduction on a multicopy of the glgP gene.  相似文献   

3.
The gene encoding NADH dehydrogenase from an alkalophile, Bacillus sp., was cloned and sequenced. The cloned DNA fragment contained an open reading frame of 1,557 nucleotides which encodes a polypeptide composed of 519 amino acid residues (Mr 55,830). The predicted amino acid sequence was consistent with the partial amino acid sequences including the N-terminal and C-terminal sequences determined in a previous study. Sequence comparison with other flavoenzymes revealed high homology between the present dehydrogenase and Escherichia coli thioredoxin reductase.  相似文献   

4.
mop is the structural gene for the molybdenum-pterin binding protein, which is the major molybdenum binding protein in Clostridium pastuerianum. The mop gene was detected by immunoscreening genomic libraries of C. pastuerianum and identified by determining the nucleotide sequence of the cloned insert of clostridial DNA. The deduced amino acid sequence of an open reading frame proved to be identical to the first twelve residues of purified Mop. The DNA sequence flanking the mop gene contains promoter-like consensus sequences which are probably responsible for the expression of Mop in Escherichia coli. The deduced amino acid composition shows that the protein is hydrophobic, lacks aromatic and cysteine residues and has a calculated molecular weight of 7,038. The N-terminal amino acid sequence of Mop has sequence homology with DNA binding proteins. The pattern and type of residues in the N-terminal region suggest it forms the helix-turn-helix structure observed in DNA binding proteins. We propose that Mop may be a regulatory protein binding the anabolic source of molybdenum.  相似文献   

5.
6.
A pectin lyase (PNL;EC4.2.2.10) gene of Pseudomonas marginalis N6301 was cloned and expressed in Escherichia coli. We purified PNL from P. marginalis N6301 and determined N-terminal 33 amino acids sequence. From this sequence, we synthesized two oligonucleotide probes. From the analysis of Southern hybridization, 2. 1kb EcoRI-SmaI fragment from the chromosomal DNA of P. marginalis was found to hybridize with oligonucleotide probes. Then, we cloned the fragment into pUC119 vector and transformed into E. coli DH5 alpha. A plasmid thus obtained was designated as pPNL6301. E. coli DH5 alpha harboring pPNL6301 expressed PNL activity. The nucleotide sequence of pn1 gene in the plasmid pPNL6301 encoding PNL from P. marginalis N6301 was determined. The structural gene of pn1 consisted of 936 base pairs. An open reading frame that encodes a 34,103 dalton polypeptide composed of 312 amino acids was assigned. The molecular weight of the polypeptide predicted from the amino acid composition was close to that of PNL of P. marginalis N6301 determined. The nucleotide sequence of the 5'-flanking region of pn1 gene showed the presence of the consensus sequence of LexA binding site, Pribnow box and ribosome binding site as found in Escherichia coli. The amino acid sequence homology of PNLs and nucleotide sequence homology of pn1 gene between P. marginalis N6301 and E. carotovora Er were 60.8% and 57.2%, respectively.  相似文献   

7.
Abstract The complete nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II (EIIMan) was determined. The gene consisted of 2052 base pairs encoding a protein of 683 amino acid residues; the molecular mass of the protein subunit was calculated to be 72570 Da. The N-terminal hydrophilic domain of EIIMan showed 39.7% homology with a C-terminal hydrophilic domain of Escherichia coli glucose-specific enzyme II (EIIGlc). Similar homology was shown between the C-terminal sequence of EIIMan and the E. coli glucose-specific enzyme III (EIIIGlc), or the EIII-like domain of Streptococcus mutans sucrose-specific enzyme II. Sequence comparison with other EIIs showed that EIIMan contained residues His-602 and Cys-28 which were homologous to the potential phosphorylation sites of EIIIGlc, or EIII-like domains, and hydrophilic domains (IIB) of several EIIs, respectively.  相似文献   

8.
F Binder  O Huber  A B?ck 《Gene》1986,47(2-3):269-277
The structural gene encoding cyclodextrin-glycosyltransferase of Klebsiella pneumoniae strain M5a1 was cloned; it is expressed both in Escherichia coli and in K. pneumoniae and the gene product is secreted into the extracellular space. Determination of the nucleotide sequence revealed an open reading frame coding for a single polypeptide of 655 amino acid (aa) residues. The enzyme is synthesized as a precursor with an N-terminal signal peptide of 30 aa residues, which is proteolytically processed between two alanine residues during export. The primary structure of CGT bears homology with the sequences of amylases from both prokaryotic and eukaryotic origins.  相似文献   

9.
A gene encoding the salicylate hydroxylase was cloned from the genomic DNA of Pseudomonas fluorescens SME11. The DNA fragment containing the nahG gene for the salicylate hydroxylase was mapped with restriction endonucleases and sequenced. The DNA fragment contained an ORF of 1,305 bp encoding a polypeptide of 434 amino acid residues. The nucleotide and amino acid sequences of the salicylate hydroxylase revealed several conserved regions with those of the enzyme encoded in P. putida PpG7: The homology of the nucleotide sequence is 83% and that of amino acid sequence is 72%. We found large conserved regions of the amino acid sequence at FAD and NADH binding regions. The FAD binding site is located at the amino terminal region and a lysine residue functions as a NADH-binding site.  相似文献   

10.
The gene encoding Thermus caldophilus GK24 (Tca) alkaline phosphatase was cloned into Escherichia coli. The primary structure of Tca alkaline phosphatase was deduced from its nucleotide sequence. The Tca alkaline phosphatase precursor, including the signal peptide sequence, was comprised of 501 amino acid residues. Its molecular mass was determined to be 54? omitted?760 Da. On the alignment of the amino acid sequence, Tca alkaline phosphatase showed sequence homology with the microbial alkaline phosphatases, 20% identity with E. coli alkaline phosphatase and 22% Bacillus subtilis (Bsu) alkaline phosphatases. High sequence identity was observed in the regions containing the Ser-102 residue of the active site, the zinc and magnesium binding sites of E. coli alkaline phosphatase. Comparison of Tca alkaline phosphatase and E. coli alkaline phosphatase structures suggests that the reduced activity of the Tca alkaline phosphatase, in the presence of zinc, is directly involved in some of the different metal binding sites. Heat-stable Tca alkaline phosphatase activity was detected in E. coli YK537, harboring pJRAP.  相似文献   

11.
A lukF gene encoding F-component of Staphylococcal leukocidin from methicillin resistant Staphylococcus aureus (MRSA) was cloned. The nucleotide sequence of lukF gene was determined. The sequence data have revealed an open reading frame, which encodes a polypeptide with 323 amino acid residues. Inspection of the amino acid sequence deduced from nucleotide sequence of lukF and that from F-component of leukocidin from S. aureus V8 clarified that pre-matured F-component contains a typical signal peptide at the NH2 terminus and ATG starting codon for pre-matured F-component was present one base downstream to the TGA which is translation termination codon for S-component of leukocidin [A. Rahman et al. (1991) Biochem. Biophys. Res. Commun. 181, 138-144]. The nucleotide sequence of 5'-flanking region of lukF showed the presence of the consensus sequence of ribosome binding site in the internal region of the structural gene of S-component. The lukF was transcribed in the same direction as that of lukS. No Pribnow box can be discerned in the intercistronic region between the lukS and lukF genes. The amino acid sequence homology between S- and F-components was 31%. F-component was expressed in Escherichia coli DH5 alpha harboring plasmid pFRK92 which contained lukF gene.  相似文献   

12.
The gene encoding the dihydrolipoyltransacetylase component (E2) of the pyruvate dehydrogenase complex from Azotobacter vinelandii has been cloned in Escherichia coli. A plasmid containing a 2.8-kbp insert of A. vinelandii chromosomal DNA was obtained and its nucleotide sequence determined. The gene comprises 1911 base pairs, 637 codons excluding the initiation codon GUG and stop codon UGA. It is preceded by the gene encoding the pyruvate dehydrogenase component (E1) of pyruvate dehydrogenase complex and by an intercistronic region of 11 base pairs containing a good ribosome binding site. The gene is followed downstream by a strong terminating sequence. The relative molecular mass (64913), amino acid composition and N-terminal sequence are in good agreement with information obtained from studies on the purified enzyme. Approximately the first half of the gene codes for the lipoyl domain. Three very homologous sequences are present, which are translated in three almost identical units, alternated with non-homologous regions which are very rich in alanyl and prolyl residues. The N-terminus of the catalytic domain is sited at residue 381. Between the lipoyl domain and the catalytic domain, a region of about 50 residues is found containing many charged amino acid residues. This region is characterized as a hinge region and is involved in the binding of the pyruvate dehydrogenase and lipoamide dehydrogenase components. The homology with the dihydrolipoyltransacetylase from E. coli is high: 50% amino acid residues are identical.  相似文献   

13.
The ilvE gene of the Escherichia coli K-12 ilvGEDA operon, which encodes branched-chain amino acid aminotransferase [EC 2.6.1.42], was cloned. The nucleotide sequence of 1.5 kilobase pairs containing the gene was determined. The coding region of the ilvE gene contained 927 nucleotide residues and could encode 309 amino acid residues. The predicted molecular weight, amino acid composition and the sequence of the N-terminal 15 residues agreed with the enzyme data reported previously (Lee-Peng, F.-C., et al. (1979) J. Bacteriol. 139, 339-345). From the deduced amino acid sequence, the secondary structure was predicted.  相似文献   

14.
The aroA locus of Bordetella pertussis, encoding 5-enolpyruvylshikimate 3-phosphate synthase, has been cloned into Escherichia coli by using a cosmid vector. The gene is expressed in E. coli and complemented an E. coli aroA mutant. The nucleotide sequence of the B. pertussis aroA gene was determined and contains an open reading frame encoding 442 amino acids, with a calculated molecular weight for 5-enolpyruvylshikimate 3-phosphate synthase of 46,688. The amino acid sequence derived from the nucleotide sequence shows homology with the published amino acid sequences of aroA gene products of other microorganisms.  相似文献   

15.
I van Die  B van Geffen  W Hoekstra  H Bergmans 《Gene》1985,34(2-3):187-196
The genes responsible for expression of type 1C fimbriae have been cloned from the uropathogenic Escherichia coli strain AD110 in the plasmid vector pACYC184. Analysis of deletion mutants from these plasmids showed that a 7-kb DNA fragment was required for biosynthesis of 1C fimbriae. Further analysis of this DNA fragment showed that four genes are present encoding proteins of 16, 18.5, 21 and 89 kDal. A DNA fragment encoding the 16-kDal fimbrial subunit has been cloned. The nucleotide sequence of the structural gene and of the C- and N-terminal flanking regions was determined. The structural gene codes for a polypeptide of 181 amino acids, including a 24-residue N-terminal signal sequence. The nucleotide sequence and the deduced amino acid sequence of the 1C subunit gene were compared with the sequences of the fimA gene, encoding the type 1 fimbrial subunit of E. coli K-12. The data show absolute homology at the N- and C-termini; there is less, but significant homology in the region between the N- and C-termini. Comparison of the amino acid compositions of the 1C and FimA subunit proteins with those of the F72 and PapA proteins (subunits for P-fimbriae) revealed that homology between these two sets of fimbrial subunits is also maximal at the N- and C-termini.  相似文献   

16.
I van Die  H Bergmans 《Gene》1984,32(1-2):83-90
The cloned DNA fragment encoding the F72 fimbrial subunit from the uropathogenic Escherichia coli strain AD110 has been identified. The nucleotide sequence of the structural gene and of 196 bp of the noncoding region preceding the gene was determined. The structural gene codes for a polypeptide of 188 amino acid residues, including a 21-residue N-terminal signal sequence. The nucleotide sequence and the deduced amino acid sequence of the F72 gene were compared with the reported sequences of the papA gene (B?ga et al., 1984). Both genes code for subunits of fimbriae that are involved in mannose-resistant hemagglutination (MRHA) of human erythrocytes. The available data show that there is absolute homology between the noncoding regions preceding both genes over 129 bp. The two proteins are homologous at the N terminus and C terminus; there is less, but significant, homology in the region between the N and C termini.  相似文献   

17.
M Foglino  S Gharbi  A Lazdunski 《Gene》1986,49(3):303-309
  相似文献   

18.
The DNA encoding the elastase of Pseudomonas aeruginosa IFO 3455 was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited high levels of both elastase activity and elastase antigens. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consisted of 301 amino acids with a relative molecular mass of 32,926 daltons. The amino acid composition predicted from the DNA sequence was quite similar to the chemically determined composition of purified elastase reported previously. We also observed nucleotide sequence encoding a signal peptide and "pro" sequence consisting of 197 amino acids upstream from the mature elastase protein gene. The amino acid sequence analysis revealed that both the N-terminal sequence of the purified elastase and the N-terminal side sequences of the C-terminal tryptic peptide as well as the internal lysyl peptide fragment were completely identical to the deduced amino acid sequences. The pattern of identity of amino acid sequences was quite evident in the regions that include structurally and functionally important residues of Bacillus subtilis thermolysin.  相似文献   

19.
Aqualysin I is an alkaline serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extreme thermophile [Matsuzawa, H., Hamaoki, M. & Ohta, T. (1983) Agric. Biol. Chem. 47, 25-28]. The gene encoding aqualysin I was cloned into Escherichia coli using synthetic oligodeoxyribonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of aqualysin I, deduced from the nucleotide sequence, agreed with the NH2-terminal sequence previously reported and the determined amino acid sequences, including the COOH-terminal sequence, of the tryptic peptides derived from aqualysin I. Aqualysin I comprised 281 amino acid residues and its molecular mass was determined to be 28,350. On alignment of the whole amino acid sequence, aqualysin I showed high sequence homology with the subtilisin-type serine proteases, and 43% identity with proteinase K, 37-39% with subtilisins and 34% with thermitase. Extremely high sequence identity was observed in the regions containing the active-site residues, corresponding to Asp32, His64 and Ser221 of subtilisin BPN'. The nucleotide sequence of the cloned DNA (1105 nucleotides) revealed that it contains the entire gene encoding aqualysin I and one open reading frame without a translational stop codon. Therefore, aqualysin I was considered to be produced as a large precursor, which contains a NH2-terminal portion, the protease and a COOH-terminal portion. The G + C content of the coding region for aqualysin I was 64.6%, which is lower than those of other Thermus genes (68-74%). The codon usage in the aqualysin I gene was rather random in comparison with that in other Thermus genes.  相似文献   

20.
The nucleotide sequence of the gene encoding pilin from Bacteroides nodosus 265 has been determined. The pilin is encoded by a single-copy gene, from which can be predicted a prepilin comprising a single protein chain of Mr 16,637. The prepilin sequence differs in several respects from the mature protein sequence. Seven additional N-terminal amino acid residues are present in prepilin, whereas residue 8, phenylalanine, undergoes posttranslational modification to become the N-methylated amino-terminal residue of mature pilin. In addition, further processing occurs through internal cleavage to produce two noncovalently linked subunits characteristic of pilins from serogroup H of B. nodosus, of which strain 265 is a member. The position of cleavage has been identified between alanine residues at positions 72 and 73 of the mature 149-residue pilin protein. The predicted pilin sequence of B. nodosus 265 shows extensive N-terminal amino acid sequence homology with other pilins of the N-methylphenylalanine type. In addition this sequence also shows homology with these N-methylphenylalanine-type pilins in the C-terminal region of the molecule, especially with pilin from Pseudomonas aeruginosa PAK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号