首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV absorption spectra of adenine, adenosine and their methyl derivatives were studied in dimethylsuloxide (DMSO). Considerable changes in UV spectra of adenine under methylation at the 1 and 3 positions, and adenosine under methylation at the 1 position attested the essential structural reconstruction of adenine purine ring. Ade and m6Ade were shown to form complexes with deprotonated carboxylic group of amino acids (carboxylate-ion) through two H-bonds involving amino group and N7H imino group, tautomeric transition N9H-->N7H being initiated namely by interaction with carboxylate-ion. Considerable changes in UV spectra of m1Ade, m1A, and m3Ade under interaction with neutral carboxylic group of amino acids were interpreted as a result of proton transfer from amino acid to the base.  相似文献   

2.
The MNDO/H quantum chemical calculations performed in order to estimate energetic features of the isoguanine (isoGua) prototropic tautomers complexes with acetic acid and its carboxylate-ion (models of neutral and deprotonated forms of amino acid carboxylic group) demonstrate ability of the latter to induce the N9H-->N7H tautomeric transition in the base, being characteristic to other purine bases as well. By contrast, the neutral carboxylic group forms the most stable complex with the ground-state isoGua tautomer N3HN9H.  相似文献   

3.
UV absorption spectra of guanine derivatives m9Gua, m(2)2,9Gua, m1Gua, m(2)1,7Gua, m3Gua, G, dG, m1G, m2G, m7G, as well as guanine analogue isoGua were studied in anhydrous dimethylsulfoxide (DMSO). Changes in UV absorption spectra of guanine derivatives in the presence of amino acid derivatives with neutral carboxylic group (ac-Asp, ac-Glu, ac-Gly, ac-Asp-OMe) or deprotonated carboxylic group (NaAc, f-Gly-ONa) were investigated and interpreted. The m1Gua and m7Gua derivatives were shown to exist as the N9H tautomers in anhydrous DMSO. The majority of examined guanine derivatives were determined to interact with deprotonated carboxylic group only, except of m7G, isoGua and m3Gua, which are able to form complexes with neutral carboxylic group as well.  相似文献   

4.
By 1H NMR, UV and IR spectroscopies in anhydrous DMSO and quantum-chemical calculations by MNDO/H in vacuum specific interactions of isocytosine with neutral and deprotonated carboxylic groups of amino acids were investigated. In vacuum interaction with carboxylate ion provokes in isoCyt transition from the ground-state enolic form to the high energy N3H-keto tautomer. In DMSO keto tautomer N3H of isoCyt is stabilized but interactions with carboxylate ion essentially shifts equilibrium to enolic form. Neutral carboxylic group forms the most stable complex with the ground-state enolic tautomer in vacuum but in DMSO it proves to shift the keto(N3H)-enolic equilibrium to the right.  相似文献   

5.
Oligodeoxynucleotide (ODN) directed triplex formation has therapeutic importance and depends on Hoogsteen hydrogen bonds between a duplex DNA and a third DNA strand. T*A:T triplets are formed at neutral pH and C+*G:C are favoured at acidic pH. It is demonstrated that spermine conjugation at N4 of 5-Me-dC in ODNs 1-5 (sp-ODNs) imparts zwitterionic character, thus reducing the net negative charge of ODNs 1-5. sp-ODNs form triplexes with complementary 24mer duplex 8:9 show foremost stability at neutral pH 7.3 and decrease in stability towards lower pH, unlike the normal ODNs where optimal stability is found at an acidic pH 5.5. At pH 7.3, control ODNs 6 and 7 carrying dC or 5-Me-dC, respectively, do not show any triple helix formation. The stability order of triplex containing 5-Me-dC-N4-(spermine) with normal and mismatched duplex was found to be X*G:C approximately X*A:T > X*C:G > X*T:A. The hysteresis curve of sp-ODN triplex 3*8:9 indicated a better association with complementary duplex 8:9 as compared to unmodified ODN 6 in triplex 6*8:9. pH-dependent UV difference spectra suggest that N3 protonation is not a requirement for triplex formation by sp-ODN and interstrand interaction of conjugated spermine more than compensates for loss in stability due to absence of a single Hoogsteen hydrogen bond. These results may have importance in designing oligonucleotides for antigene applications.  相似文献   

6.
The 6-oxopurine xanthine (Xan, neutral form 2,6-diketopurine) differs from the corresponding 6-oxopurines guanine (Gua) and hypoxanthine (Hyp) in that, at physiological pH, it consists of a approximately 1:1 equilibrium mixture of the neutral and monoanionic forms, the latter due to ionization of N(3)-H, in striking contrast to dissociation of the N(1)-H in both Gua and Hyp at higher pH. In xanthosine (Xao) and its nucleotides the xanthine ring is predominantly, or exclusively, a similar monoanion at physiological pH. The foregoing has, somewhat surprisingly, been widely overlooked in studies on the properties of these compounds in various enzyme systems and metabolic pathways, including, amongst others, xanthine oxidase, purine phosphoribosyltransferases, IMP dehydrogenases, purine nucleoside phosphorylases, nucleoside hydrolases, the enzymes involved in the biosynthesis of caffeine, the development of xanthine nucleotide-directed G proteins, the pharmacological properties of alkylxanthines. We here review the acid/base properties of xanthine, its nucleosides and nucleotides, their N-alkyl derivatives and other analogues, and their relevance to studies on the foregoing. Included also is a survey of the pH-dependent helical forms of polyxanthylic acid, poly(X), its ability to form helical complexes with a broad range of other synthetic homopolynucleotides, the base pairing properties of xanthine in synthetic oligonucleotides, and in damaged DNA, as well as enzymes involved in circumventing the existence of xanthine in natural DNA.  相似文献   

7.
Natural abundance 15N NMR spectroscopy and ancillary spectroscopic techniques have been employed to study the solution structure of 8-hydroxyadenosine. 8-Hydroxyadenosine is a naturally occurring oxidized nucleic acid adduct that is generally implied to have an 8-hydroxy tautomeric structure. 15N NMR chemical shifts and coupling constants, however, indicate that the modified base exists as an 8-keto tautomer. The pH dependence of 15N NMR and UV spectra showed the presence of two pKa's, at 2.9 and 8.7, corresponding to protonation at N1 and ionization at N7, respectively. The latter results in the formation of an 8-enolate structure. Unusual upfield shifts of the 1H and 15N resonances of the NH2 group, and a reduction in the one-bond coupling constant 1JN6-H6, is indicative of an unfavorable steric or electronic interaction between the NH2 group and the adjacent N7-H proton. This interaction results in a subtle change in the structure of the NH2 group. In addition to being a possible mechanism for alteration of hydrogen bonding in oxidized DNA, this type of interaction gives a better understanding into N7-N9 tautomerism of adenine. Furthermore, the structure of 8-hydroxyadenosine has been related to possible mechanisms for mutations.  相似文献   

8.
The single-crystal structures of three collagen-like host-guest peptides, (Pro-Pro-Gly)(4) -Hyp-Yaa-Gly-(Pro-Pro-Gly)(4) [Yaa = Thr, Val, Ser; Hyp = (4R)-4-hydroxyproline] were analyzed at atomic resolution. These peptides adopted a 7/2-helical structure similar to that of the (Pro-Pro-Gly)(9) peptide. The stability of these triple helices showed a similar tendency to that observed in Ac-(Gly-Hyp-Yaa)(10) -NH(2) (Yaa = Thr, Val, Ser) peptides. On the basis of their detailed structures, the differences in the triple-helical stabilities of the peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence were explained in terms of van der Waals interactions and dipole-dipole interaction between the Hyp residue in the X position and the Yaa residue in the Y position involved in the Hyp(X):Yaa(Y) stacking pair. This idea also explains the inability of Ac-(Gly-Hyp-alloThr)(10) -NH(2) and Ac-(Gly-Hyp-Ala)(10) -NH(2) peptides to form triple helices. In the Hyp(X):Thr(Y), Hyp(X):Val(Y), and Hyp(X):Ser(Y) stacking pairs, the proline ring of the Hyp residues adopts an up-puckering conformation, in agreement with the residual preference of Hyp, but in disagreement with the positional preference of X in the Gly-Xaa-Yaa sequence.  相似文献   

9.
By UV spectroscopic data for anhydrous DMSO solutions and ab initio HF/6-31G** calculations in vacuum it was shown for the first time that deprotonated amino acid carboxylic group is able to change tautomeric state of a nucleotide base, exactly to convert the N9H ground-state prototropic tautomer of adenine into the N7H and N1H rare ones.  相似文献   

10.
Interactions of 9-methylguanine (m9Gua) with carboxylate ion of acetic acid (CH3COO-) and Na+ were studied by 1H NMR spectroscopy and ab initio quantum chemical calculations of the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels of theory. Changes in the m9Gua 1H NMR spectrum in the presence of the equimolar amount of sodium acetate (NaAc), which in anhydrous DMSO dissociates to CH3COO- and Na+, were interpreted as a consequence of a complex formation of m9Gua in the amino-keto-N1H tautomeric form (m9GuaN1H) with carboxylate ions via two H-bonds involving amino and N1H-imino protons. Quantum chemical calculations of interactions of the m9GuaN1H ground-state tautomer and the m9GuaN3H high energy one with relative energy 20.01 kcal/mol show that the ground state tautomer forms the ground-state complex CH3COO-:mgGuaN1H, by 5.57 kcal/mol more stable than the CH3COO-:m9GuaN3H complex, and coordination of Na+ with the O6 and N7 atoms reduces this energy difference to 2.57 kcal/mol. Such a coordination of Na+ with tautomer m9GuaN3H therewith decreases its relative energy only to 13.31 kcal/mol. Non-additivity of the two ligands contributions to the 8-times reduction of the relative energy of the high energy tautomer in the CH3COO-:m9GuaN3H:Na+(O6,N7) triple complex was concluded, the role of CH3COO- being dominant. Besides, coordination with Na+ resulted in an iminoproton transfer from the base to CH3COO- in the triple complexes of both tautomers, according to calculations in vacuum. Biological significance of the results is noticed.  相似文献   

11.
Substrate properties of xanthine (Xan) and xanthosine (Xao) for purine nucleoside phosphorylases (PNP) of mammalian origin have been reported previously, but only at a single arbitrarily selected pH and with no kinetic constants. Additionally, studies have not taken into account the fact that, at physiological pH, Xao (pKa = 5.7) is a monoanion, while Xan (pKa = 7.7) is an equilibrium mixture of the neutral and monoanionic forms. Furthermore the monoanionic forms, unlike those of guanosine (Guo) and inosine (Ino), and guanine (Gua) and hypoxanthine (Hx), are still 6-oxopurines. The optimum pH for PNP from human erythrocytes and calf spleen with both Xao and Xan is in the range 5-6, whereas those with Guo and Gua, and Ino and Hx, are in the range 7-8. The pH-dependence of substrate properties of Xao and Xan points to both neutral and anionic forms as substrates, with a marked preference for the neutral species. Both neutral and anionic forms of 6-thioxanthine (pKa = 6.5 +/- 0.1), but not of 2-thioxanthine (pKa = 5.9 +/- 0.1), are weaker substrates. Phosphorolysis of Xao to Xan by calf spleen PNP at pH 5.7 levels off at 83% conversion, due to equilibrium with the reverse synthetic pathway (equilibrium constant 0.05), and not by product inhibition. Replacement of Pi by arsenate led to complete arsenolysis of Xao. Kinetic parameters are reported for the phosphorolytic and reverse synthetic pathways at several selected pH values. Phosphorolysis of 200 micro m Xao by the human enzyme at pH 5.7 is inhibited by Guo (IC50 = 10 +/- 2 micro m), Hx (IC50 = 7 +/- 1 micro m) and Gua (IC50 = 4.0 +/- 0.2 micro m). With Gua, inhibition was shown to be competitive, with Ki = 2.0 +/- 0.3 micro m. By contrast, Xao and its products of phosphorolysis (Xan and R1P), were poor inhibitors of phosphorolysis of Guo, and Xan did not inhibit the reverse reaction with Gua. Possible modes of binding of the neutral and anionic forms of Xan and Xao by mammalian PNPs are proposed. Attention is directed to the fact that the structural properties of the neutral and ionic forms of XMP, Xao and Xan are also of key importance in many other enzyme systems, such as IMP dehydrogenase, some nucleic acid polymerases, biosynthesis of caffeine and phosphoribosyltransferases.  相似文献   

12.
Interactions of calf spleen purine nucleoside phosphorylase (PNP) with a non-typical substrate, 8-azaguanine (8-azaG), and a bisubstrate analogue inhibitor, 9-(2-phosphonylmethoxyethyl)-8-azaguanine (PME-azaG), were investigated by means of steady-state fluorescence spectroscopy. Both 8-azaG and PME-azaG form fluorescent complexes with the enzyme, and dissociation constants are comparable to the appropriate parameters (Km or Ki) obtained from kinetic measurements. PME-azaG inhibits both the phosphorolytic and synthetic pathway of the reaction in a competitive mode. The complex of 8-azaG with PNP is much weaker than the previously reported Gua-PNP complex, and its dissociation constant increases at pH > 7, where 8-azaG exists predominantly as the monoanion (pKa approximately 6.5). The fluorescence difference spectrum of the PNP/8-azaG complex points to participation of the N(7)H or/and N(8)H tautomers of the neutral substrate, and the 9-(2-phosphonylmethoxyethyl) derivative also exists as a neutral species in the complex with PNP. The latter conclusion is based on spectral characteristics of the PNP/PME-azaG complex, confirmed by fluorimetric determination of dissociation constants, which are virtually pH-independent in the range 6-7. These findings testify to involvement of the neutral purine molecule, and not its monoanion, as the substrate in the reverse, synthetic reaction. It is proposed that, in the reverse reaction pathway, the natural purine substrate is bound to the enzyme as the neutral N(7)H tautomer, which is responsible for the reported strong fluorescence of the guanine-PNP complex.  相似文献   

13.
The monoanions of the 6-oxopurines guanine (Gua) and hypoxanthine (Hx), and their nucleosides, pKa approximately 9 due to dissociation of the N(1)-H, are predominantly in their neutral forms at physiological pH. By contrast, the monoanions of the 6-oxopurine xanthine (Xan) and xanthosine (Xao), were long ago proposed to involve dissociation of the N(3)-H, with pKa values of 7.5 and 5.7, respectively, so that, at physiological pH, the former is mixture of the neutral and monoanionic species, and the latter predominantly the monoanion. We have employed multi-dimensional heteronuclear NMR spectroscopy, which fully confirms the proposed mode of monoanion formation in Xao (and, by implication, in Xan), further supported by the results of ab initio quantum mechanical calculations, and additionally extended to determination of the preferred conformational parameters in solution for the neutral and monoanionic species. These findings are highly relevant to the modes of binding, and to the substrate properties, of Xan, Xao and its 5'-phosphate (XMP) in numerous enzyme systems, hitherto virtually ignored, and illustrated by several concrete examples.  相似文献   

14.
Semiempirical molecular orbital (MO) calculations with an implicit treatment of the water environment were employed in order to assess whether the sialyl Lewis(X) (sLe(X)) tetrasaccharide binds to E-selectin in the anionic or neutral (i.e., protonated) state. The analysis of the frontier molecular orbitals, electrostatic potential surfaces, and conformational behavior of the sugar indicates that its neutral form possesses the necessary characteristics for binding. In particular, the LUMO level of the neutral sLe(X) molecule is localized both on the carboxylic group of the N-acetyl neuraminic acid (NeuNAc) residue and on the nearby glycosidic linkage. These two moieties interact with the Arg97 residue of E-selectin, as revealed by a recent crystal structure analysis of the E-selectin/sLe(X) complex. The energetics of this specific interaction was investigated with the aid of ab initio Hartree-Fock MO calculations, which resulted in a BSSE-corrected binding energy of 16.63 kcal/mol. Our observations could open up new perspectives in the design of sLe(X) mimics.  相似文献   

15.
The molecular structures, relative stability order, and dipole moments of a complete family of 21 planar hypoxanthine (Hyp) prototropic molecular–zwitterionic tautomers including ylidic forms were computationally investigated at the MP2/6–311++G(2df,pd)//B3LYP/6–311++G(d,p) level of theory in vacuum and in three different surrounding environments: continuum with a low dielectric constant (??=?4) corresponding to a hydrophobic interface of protein–nucleic acid interactions, dimethylsulfoxide (DMSO), and water. The keto-N1HN7H tautomer was established to be the global minimum in vacuum and in continuum with ??=?4, while Hyp molecule exists as a mixture of the keto-N1HN9H and keto-N1HN7H tautomers in approximately equal amounts in DMSO and in water at T?=?298.15?K. We found out that neither intramolecular tautomerization by single proton transfer in the Hyp base, nor intermolecular tautomerization by double proton transfer in the most energetically favorable Hyp·Hyp homodimer (symmetry C 2h ), stabilized by two equivalent N1H…O6 H-bonds, induces the formation of the enol tautomer (marked with an asterisk) of Hyp with cis-oriented O6H hydroxyl group relative to neighboring N1C6 bond. We first discovered a new scenario of the keto–enol tautomerization of Hyp?·?Hyp homodimer (C 2h ) via zwitterionic near-orthogonal transition state (TS), stabilized by N1+H…N1? and O6+H…N1? H-bonds, to heterodimer Hyp??·?Hyp (C s ), stabilized by O6H…O6 and N1H…N1 H-bonds. We first showed that Hyp??·?Thy mispair (C s ), stabilized by O6H…O4, N3H…N1, and C2H…O2 H-bonds, mimicking Watson–Crick base pairing, converts to the wobble Hyp?·?Thy base pair (C s ), stabilized by N3H…O6 and N1H…O2 H-bonds, via high- and low-energy TSs and intermediate Hyp?·?Thy?, stabilized by O4H…O6, N1H…N3, and C2H…O2 H-bonds. The most energetically favorable TS is the zwitterionic pair Hyp+?·?Thy? (C s ), stabilized by O6+H…O4?, O6+H…N3?, N1+H…N3?, and N1+H…O2? H-bonds. The authors expressed and substantiated the hypothesis, that the keto tautomer of Hyp is a mutagenic compound, while enol tautomer Hyp? does not possess mutagenic properties. The lifetime of the nonmutagenic tautomer Hyp? exceeds by many orders the time needed to complete a round of DNA replication in the cell. For the first time purine–purine planar H-bonded mispairs containing Hyp in the anti-orientation with respect to the sugar moiety – Hyp?·?Ade syn , Hyp?·?Gua? syn , and Hyp?·?Gua syn , that closely resembles the geometry of the Watson–Crick base pairs, have been suggested as the source of transversions. An influence of the surrounding environment (??=?4) on the stability of studied complexes and corresponding TSs was estimated by means of the conductor-like polarizable continuum model. Electron-topological, structural, vibrational, and energetic characterictics of all conventional and nonconventional H-bonds in the investigated structures are presented. Presented data are key to understanding elementary molecular mechanisms of mutagenic action of Hyp as a product of the adenine deamination in DNA.  相似文献   

16.
Lovely AE  Wenzel TJ 《Chirality》2008,20(3-4):370-378
Enantiomeric discrimination is observed in the 1H and 13C NMR spectra of secondary and tertiary amines in the presence of (-)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (1). Nonequivalence of the resonances of prochiral nuclei in primary and secondary amines is also observed when they associate with 1. The amines are added in their neutral form and are protonated by the carboxylic acid groups of 1 to produce the corresponding ammonium and carboxylate ions. Secondary amines associate with 1 through two hydrogen bonds and an ion pair interaction. Tertiary amines can only form one hydrogen bond to accompany the ion pairing. Chiral discrimination in the 1H and 13C NMR spectra of a series of aryl-containing secondary amines is of sufficient magnitude to determine enantiomeric purities. The discrimination in the spectra of tertiary amines with 1 is smaller, but 13C NMR spectra provided enough distinction for the determination of enantiomeric purity.  相似文献   

17.
The interaction of poly-N6-methyladenylic acid (poly(m6A) with poly-5-bromouridylic acid (poly(BU) was studied by the mixing curve method. A.1 m6A: 2 BU stoichiometry was clearly indicated over a wide range of ionic strengths at neutral pH, while the binding of poly(m6A) to poly(U) is known to occur with 1 m6A:1 U. Digestion by nuclease S1 confirmed this stoichiometry, indicating the absence of single strands in a 1:2 mixture. Heating profile analysis and hydroxyapatite column chromatography provided further confirmation of this finding. To determine whether 1:2 stoichiometry holds in a monomer-polymer system, the interaction of N6-methyl-9-methyladenine (m6m9A), a corresponding monomer of poly(m6A), with poly(BU) was investigated. Equilibrium dialysis experiments showed the stoichiometry of the interaction to be 1 m6A:2 BU. Thus, we would describe some structural studies of the above complexes using c.d. and i.r. spectroscopy. Poly (m6A).2poly(BU) and m6m9A.2poly(BU) are helical and analogous to each other in structure, and the bases in the complexes are all bound by hydrogen-bonding. N6-(delta 2-isopentenyl)- and N6-allyl-9-methyladenine were also found to form complexes with poly(BU), giving similar c.d. spectra with that of m6m9A.2poly(BU). The melting experiments indicated the Tms to be substantially decreased, compared to the parent unmodified complexes, even though the Tm dependence of the polymer complex on salt concentration conforms to the typical triple strand. In the following, the biological significance of this novel pairing will be discussed.  相似文献   

18.
A new biomolecule labeling method that utilizes the [(99m)Tc(N)(PNP)](2+) metal fragment is presented. Thus, a series of nitrido mixed-ligand M(V) complexes (M = (99m)Tc, (99g)Tc, Re), [M(N)(Ln)(PNP)], where Ln is the dianionic form of a dithiolate or substituted-dithiolate ligand and PNP is an aminodiphosphine, is described. (99m)Tc complexes can be prepared using either a two-step or a three-step procedure starting from generator-eluted pertechnetate through a prereduced mixture of [(99m)Tc(N)]-containing species, followed by sequential or contemporary addition of the relevant dithiolate and aminodiphosphine. The reactions of 2,3-dimercaptopropionic acid (H(2)L1) with [Tc(N)(PNP)](2+) were investigated in detail. It was found that this bidentate ligand coordinated the metal fragment through the [S(-),S(-)] donor atom pair, to yield neutral mixed-ligand complexes [(99m)Tc(N)(L1)(PNP)] in high specific activity. The additional carboxylic functional group was not involved in metal coordination, thus remaining available for conjugation to target-specific molecules. Dithiolates incorporating pendant functional group(s) gave rise to a 1:1 diastereoisomeric mixture of syn-[M(N)(Ln)(PNP)] and anti-[M(N)(Ln)(PNP)] derivatives, depending on the relative orientation of the dithiolate substituent(s) with respect to the terminal nitrido group, and no isomeric conversion was detected. (99m)Tc species had been proven to be identical with the (99g)Tc complexes prepared at the macroscopic level by comparison of the corresponding radiometric and UV/vis HPLC profiles. Challenge experiments with cysteine or glutathione indicated that these physiological agents had no effect on the stability of this class of mixed-ligand (99m)Tc-complexes. Biodistribution studies in rats of selected (99m)Tc-complexes showed a rapid clearance from the blood and tissues after 60 min pi.  相似文献   

19.
1H and 15N NMR studies have been undertaken on complexes of Lactobacillus casei dihydrofolate reductase (DHFR) formed with analogues of the antibacterial drug brodimoprim (2,4-diamino-5-(3', 5'-dimethoxy-4'-bromobenzyl)pyrimidine) in order to monitor interactions between carboxylate groups on the ligands and basic residues in the protein. These analogues had been designed by computer modeling with carboxylated alkyl chains introduced at the 3'-O position in order to improve their binding properties by making additional interactions with basic groups in the protein. Specific interactions between ligand carboxylate groups and the conserved Arg57 residue have been detected in studies of 1H/15N HSQC spectra of complexes of DHFR with both the 4-carboxylate and the 4, 6-dicarboxylate brodimoprim analogues. The spectra from both complexes showed four resolved signals for the four NHeta protons of the guanidino group of Arg57, and this is consistent with hindered rotation in the guanidino group resulting from interactions with the 4-carboxylate group in each analogue. In the spectra of each complex, one of the protons from each of the two NH2 groups and both nitrogens are considerably deshielded compared to the shielding values normally observed for such nuclei. This pattern of deshielding is that expected for a symmetrical end-on interaction of the carboxylate oxygens with the NHeta12 and NHeta22 guanidino protons. The differences in the degree of deshielding between the complexes of the two structurally similar brodimoprim analogues and the methotrexate indicates that the shielding is very sensitive to geometry, most probably to hydrogen bond lengths. The 1H/15N HSQC spectrum of the DHFR complex with the brodimoprim-6-carboxylate analogue does not feature any deshielded Arg NHeta protons and this argues against a similar interaction with the Arg57 in this case. It has not proved possible to determine whether the 6-carboxylate in this analogue is interacting directly with any residue in the protein. 1H/15N HSQC spectra have been fully assigned for the complexes with the three brodimoprim analogues and chemical shift mapping used to explore interactions in the binding site. The 1H signals of the bound ligands for all three brodimoprim analogues have been assigned. Their 1H chemical shifts were found to be fairly similar in the different complexes indicating that the 2, 4-diaminopyrimidine and the benzyl ring are binding in essentially the same binding sites and with the same overall conformation in the different complexes. The rotation rate about the NepsilonCzeta bond in the brodimoprim-4,6-dicarboxylate complex with DHFR has been determined from a zz-HSQC exchange experiment, and its value is quite similar to that observed in the DHFR.methotrexate complex (24 +/- 10 s-1 at 8 degrees C and 50 +/- 10 s-1 at 15 degrees C, respectively). The 1H and 15N chemical shift differences of selected amide and guanidino NH groups, measured between the DHFR complexes, provided further evidence about the interactions involving Arg57 with the 4-carboxylate and 4,6-dicarboxylate brodimoprim analogues.  相似文献   

20.
Quantum-chemical calculations were performed for all possible nine neutral tautomers of purine and their oxidized and reduced forms in water {PCM//DFT(B3LYP)/6?311+G(d,p)} and compared to those in the gas phase {DFT(B3LYP)/6?311+G(d,p)}. PCM hydration influences geometries, π-electron delocalization, and relative energies of purine tautomers in different ways. Generally, the harmonic oscillator model of electron delocalization (HOMED) indices increase when proceeding from the gas phase to aequeous solution for the neutral and redox forms of purine. Their changes for the neutral and oxidized tautomers are almost parallel to the relative energies showing that aromaticity plays an important role in the tautomeric preferences. Tautomeric stabilities and tautomeric preferences vary when proceeding from the gas phase to water indicating additionally that intra- and intermolecular interactions affect tautomeric equilibria. The tautomeric mixture of neutral purine in the gas phase consists mainly of the N9H tautomer, whereas two tautomers (N9H and N7H) dominate in water. For oxidized purine, N9H is favored in the gas phase, whereas N1H in water. A gain of one electron dramatically changes the relative stabilities of the CH and NH tautomers that C6H and C8H dominate in the tautomeric mixture in the gas phase, whereas N3H in water. These variations show exceptional sensitivity of the tautomeric purine system on environment in the electron-transfer reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号