首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A celery petiole phloem cDNA library was constructed and used to identify a cDNA that gives Saccharomyces cerevisiae cells the ability to grow on mannitol and transport radiolabeled mannitol in a manner consistent with a proton symport mechanism. This cDNA was named AgMaT1 (Apium graveolens mannitol transporter 1). The expression profile in source leaves and phloem was in agreement with a role for mannitol in phloem loading in celery. The identification in eukaryotes of a mannitol transporter is important because mannitol is not only a primary photosynthetic product in species such as celery but is also considered a compatible solute and antioxidant implicated in resistance to biotic and abiotic stress.  相似文献   

2.
The mature petiole of celery is an organ with versatile sink/source capacities where sucrose and mannitol are unloaded from and reloaded into the phloem cells. Plasma-membrane vesicles were purified by twophase partitioning either from phloem strands isolated from mature petioles of celery (Apium graveolens L.) or from mature petioles devoid of vascular bundles. Both types of vesicle were comparable in purity (more than 86% of plasma-membrane origin), size (135 nm diameter) and orientation (72% right-side-out). Plasma-membrane vesicles from phloem tissues had a higher vanadate-sensitive ATPase activity than plasma-membrane vesicles from petioles. Plasma-membrane vesicles from phloem tissues accumulated mannitol and sucrose in response to an artificial proton-motive force, in agreement with the existence of proton/substrate carriers. Plasma-membrane vesicles from petioles devoid of vascular bundles accumulated only mannitol following application of an artificial proton-motive force. The data suggest the volvement of apoplasmic transport events. The pathway for sucrose uptake in storage parenchyma cells is discussed in the light of the available physiological data.  相似文献   

3.
Immunolocalization of mannitol dehydrogenase (MTD) in celery (Apium graveolens L.) suspension cells and plants showed that MTD is a cytoplasmic enzyme. MTD was found in the meristems of celery root apices, in young expanding leaves, in the vascular cambium, and in the phloem, including sieve-element/companion cell complexes, parenchyma, and in the exuding phloem sap of cut petioles. Suspension cells that were grown in medium with mannitol as the sole carbon source showed a high anti-MTD cross-reaction in the cytoplasm, whereas cells that were grown in sucrose-containing medium showed little or no cross-reaction. Gel-blot analysis of proteins from vascular and nonvascular tissues of mature celery petioles showed a strong anti-MTD sera cross-reactive band, corresponding to the 40-kD molecular mass of MTD in vascular extracts, but no cross-reactive bands in nonvascular extracts. The distribution pattern of MTD within celery plants and in cell cultures that were grown on different carbon sources is consistent with the hypothesis that the Mtd gene may be regulated by sugar repression. Additionally, a developmental component may regulate the distribution of MTD within celery plants.  相似文献   

4.
Nadwodnik J  Lohaus G 《Planta》2008,227(5):1079-1089
Sugar and sugar alcohol concentrations were analyzed in subcellular compartments of mesophyll cells, in the apoplast, and in the phloem sap of leaves of Plantago major (common plantain), Plantago maritima (sea plantain), Prunus persica (peach) and Apium graveolens (celery). In addition to sucrose, common plantain, sea plantain, and peach also translocated substantial amounts of sorbitol, whereas celery translocated mannitol as well. Sucrose was always present in vacuole and cytosol of mesophyll cells, whereas sorbitol and mannitol were found in vacuole, stroma, and cytosol in all cases except for sea plantain. The concentration of sorbitol, mannitol and sucrose in phloem sap was 2- to 40-fold higher than that in the cytosol of mesophyll cells. Apoplastic carbohydrate concentrations in all species tested were in the low millimolar range versus high millimolar concentrations in symplastic compartments. Therefore, the concentration ratios between the apoplast and the phloem were very strong, ranging between 20- to 100-fold for sorbitol and mannitol, and between 200- and 2000-fold for sucrose. The woody species, peach, showed the smallest concentration ratios between the cytosol of mesophyll cells and the phloem as well as between the apoplast and the phloem, suggesting a mixture of apoplastic and symplastic phloem loading, in contrast to the herbal plant species (common plantain, sea plantain, celery) which likely exhibit an active loading mode for sorbitol and mannitol as well as sucrose from the apoplast into the phloem.  相似文献   

5.
Noiraud N  Delrot S  Lemoine R 《Plant physiology》2000,122(4):1447-1455
In celery (Apium graveolens L.), long-distance transport of reduced carbon occurs both in the form of sucrose (Suc) and mannitol. The presence of mannitol has been related to the resistance of celery to salt stress. To investigate the transport events occurring during salt stress, we have cloned the H(+)/Suc transporter of celery AgSUT1 (A. graveolens Suc uptake transport 1) from a mature leaf cDNA library. The function of the encoded protein was confirmed by expression in yeast. AgSUT1 is a H(+)/Suc transporter with a high affinity for Suc (K(m) of 139 microM). Another closely related cDNA (AgSUT2) was also identified. AgSUT1 is mainly expressed in mature leaves and phloem of petioles, but also in sink organs such as roots. When celery plants were subjected to salt stress conditions (30 d watering with 300 mM NaCl) favoring mannitol accumulation (J.D. Everard, R. Gucci, S.C. Kann, J.A. Flore, W.H. Loescher [1994] Plant Physiol 106: 281-292), AgSUT1 expression was decreased in all organs, but markedly in roots. The results are discussed in relation to the physiology of celery.  相似文献   

6.
H Hu  S G Penn  C B Lebrilla    P H Brown 《Plant physiology》1997,113(2):649-655
Boron (B) polyol complexes have been isolated and characterized from the phloem sap of celery (Apium graveolens L.) and the extrafloral nectar of peach (Prunus persica L.). In celery the direct analysis of untreated phloem sap by matrix-assisted laser desorption-Fourier transform mass spectrometry, with verification by high-performance liquid chromagraphy and gas chromatography-mass spectrometry, revealed that B is present in the phloem as the mannitol-B-mannitol complex. Molecular modeling further predicted that this complex is present in the 3,4 3',4' bis-mannitol configuration. In the extrafloral nectar of peach, B was present as a mixture of sorbitol-B-sorbitol, fructose-B-fructose, or sorbitol-B-fructose. To our knowledge, these findings represent the first successful isolation and characterization of soluble B complexes from higher plants and provide a mechanistic explanation for the observed phloem B mobility in these species.  相似文献   

7.
Several lines of evidence indicate that glucose and fructose are essentially absent in mobile phloem sap. However, this paradigm has been called into question, especially but not entirely, with respect to species in the Ranunculaceae and Papaveraceae. In the experiments in question, phloem sap was obtained by detaching leaves and placing the cut ends of the petioles in an EDTA solution. More hexose than sucrose was detected. In the present study, these results were confirmed for four species. However, almost identical results were obtained when the leaf blades were removed and only petiole stubs were immersed. This suggests that the sugars in the EDTA solution represent compounds extracted from the petioles, rather than sugars in transit in the phloem. In further experiments, the leaf blades were exposed to (14)CO(2) and, following a chase period, radiolabelled sugars in the petioles and EDTA exudate were identified. Almost all the radiolabel was in the form of [(14)C]sucrose, with little radiolabelled hexose. The data support the long-held contention that sucrose is a ubiquitous transport sugar, but hexoses are essentially absent in the phloem stream.  相似文献   

8.
A sucrose (Suc) transporter cDNA has been cloned from Alonsoa meridionalis, a member of the Scrophulariaceae. This plant species has an open minor vein configuration and translocates mainly raffinose and stachyose in addition to Suc in the phloem (C. Knop, O. Voitsekhovskaja, G. Lohaus [2001] Planta 213: 80-91). These are typical properties of symplastic phloem loaders. For functional characterization, AmSUT1 cDNA was expressed in bakers' yeast (Saccharomyces cerevisiae). Substrate and inhibitor specificities, energy dependence, and Km value of the protein agree well with the properties measured for other Suc transporters of apoplastic phloem loaders. A polyclonal antiserum against the 17 N-terminal amino acids of the A. meridionalis Suc transporter AmSUT1 was used to determine the cellular localization of the AmSUT1 protein. Using fluorescence labeling on sections from A. meridionalis leaves and stems, AmSUT1 was localized exclusively in phloem cells. Further histological characterization identified these cells as companion cells and sieve elements. p-Chloromercuribenzenesulfonic acid affected the sugar exudation of cut leaves in such a way that the exudation rates of Suc and hexoses decreased, whereas those of raffinose and stachyose increased. The data presented indicate that phloem loading of Suc and retrieval of Suc in A. meridionalis are at least partly mediated by the activity of AmSUT1 in addition to symplastic phloem loading.  相似文献   

9.
Little is known about the molecular processes involved in the phloem response to aphid feeding. We investigated molecular responses to aphid feeding on celery (Apium graveolenscv. Dulce) plants infested with the aphid Myzus persicae, as a means of identifying changes in phloem function. We used celery as our model species as it is easy to separate the phloem from the surrounding tissues in the petioles of mature leaves of this species. We generated a total of 1187 expressed sequence tags (ESTs), corresponding to 891 non-redundant genes. We analysed these ESTs in silico after cDNA macroarray hybridisation. Aphid feeding led to significant increase in RNA accumulation for 126 different genes. Different patterns of deregulation were observed, including transitory or stable induction 3 or 7days after infestation. The genes affected belonged to various functional categories and were induced systemically in the phloem after infestation. In particular, genes involved in cell wall modification, water transport, vitamin biosynthesis, photosynthesis, carbon assimilation and nitrogen and carbon mobilisation were up-regulated in the phloem. Further analysis of the response in the phloem or xylem suggested that a component of the response was developed more specifically in the phloem. However, this component was different from the stress responses in the phloem driven by pathogen infection. Our results indicate that the phloem is actively involved in multiple adjustments, recruiting metabolic pathways and in structural changes far from aphid feeding sites. However, they also suggest that the phloem displays specific mechanisms that may not be induced in other tissues.EST, macroarray and clustering data are available from our website [http://www-biocel.versailles.inra.fr/phloem]. Data deposition: The sequences reported in this paper have been deposited in the Genbank database (Accession nos.: AY607692-AY607700, AY611007, CN253939-CN255151, CV512445-CV512447 and CV651120-CV651121).  相似文献   

10.
Six genes of the Arabidopsis thaliana monosaccharide transporter-like (MST-like) superfamily share significant homology with polyol transporter genes previously identified in plants translocating polyols (mannitol or sorbitol) in their phloem (celery [Apium graveolens], common plantain [Plantago major], or sour cherry [Prunus cerasus]). The physiological role and the functional properties of this group of proteins were unclear in Arabidopsis, which translocates sucrose and small amounts of raffinose rather than polyols. Here, we describe POLYOL TRANSPORTER5 (AtPLT5), the first member of this subgroup of Arabidopsis MST-like transporters. Transient expression of an AtPLT5–green fluorescent protein fusion in plant cells and functional analyses of the AtPLT5 protein in yeast and Xenopus oocytes demonstrate that AtPLT5 is located in the plasma membrane and characterize this protein as a broad-spectrum H+-symporter for linear polyols, such as sorbitol, xylitol, erythritol, or glycerol. Unexpectedly, however, AtPLT5 catalyzes also the transport of the cyclic polyol myo-inositol and of different hexoses and pentoses, including ribose, a sugar that is not transported by any of the previously characterized plant sugar transporters. RT-PCR analyses and AtPLT5 promoter-reporter gene plants revealed that AtPLT5 is most strongly expressed in Arabidopsis roots, but also in the vascular tissue of leaves and in specific floral organs. The potential physiological role of AtPLT5 is discussed.  相似文献   

11.
The cDNAs of two sorbitol transporters, common plantain (Plantago major) polyol transporter (PLT) 1 and 2 (PmPLT1 and PmPLT2), were isolated from a vascular bundle-specific cDNA library from common plantain, a dicot plant transporting Suc plus sorbitol in its phloem. Here, we describe the kinetic characterization of these sorbitol transporters by functional expression in Brewer's yeast (Saccharomyces cerevisiae) and in Xenopus sp. oocytes and for the first time the localization of plant PLTs in specific cell types of the vascular tissue. In the yeast system, both proteins were shown to be uncoupler sensitive and could be characterized as low-affinity and low-specificity polyol symporters. The Km value for the physiological substrate sorbitol is 12 mm for PmPLT1 and even higher for PmPLT2, which showed an almost linear increase in sorbitol transport rates up to 20 mm. These data were confirmed in the Xenopus sp. system, where PmPLT1 was analyzed in detail and characterized as a H+ symporter. Using peptide-specific polyclonal antisera against PmPLT1 or PmPLT2 and simultaneous labeling with the monoclonal antiserum 1A2 raised against the companion cell-specific PmSUC2 Suc transporter, both PLTs were localized to companion cells of the phloem in common plantain source leaves. These analyses revealed two different types of companion cells in the common plantain phloem: younger cells expressing PmSUC2 at higher levels and older cells expressing lower levels of PmSUC2 plus both PLT genes. The putative role of these low-affinity transporters in phloem loading is discussed.  相似文献   

12.
Phloem protein 2 (PP2) is one of the most abundant and enigmatic proteins in the phloem sap. Although thought to be associated with structural P-protein, PP2 is translocated in the assimilate stream where its lectin activity or RNA-binding properties can exert effects over long distances. Analyzing the diversity of these proteins in vascular plants led to the identification of PP2-like genes in species from 17 angiosperm and gymnosperm genera. This wide distribution of PP2 genes in the plant kingdom indicates that they are ancient and common in vascular plants. Their presence in cereals and gymnosperms, both of which lack structural P-protein, also supports a wider role for these proteins. Within this superfamily, PP2 proteins have considerable size polymorphism. This is attributable to variability in the length of the amino terminus that extends from a highly conserved domain. The conserved PP2 domain was identified in the proteins encoded by six genes from several cucurbits, celery (Apium graveolens), and Arabidopsis that are specifically expressed in the sieve element-companion cell complex. The acquisition of additional modular domains in the amino-terminal extensions of other PP2-like proteins could reflect divergence from its phloem function.  相似文献   

13.
Jaleh Daie 《Planta》1987,171(4):474-482
The uptake of different sugars was studied in segments of isolated phloem from petioles of celery (Apium graveolens L.) in order to determine the kinetics and specificity of phloem loading in this highly uniform conductive tissue. The uptake kinetics of sucrose and the sugar alcohol, mannitol, which are both phloem-translocated, indicated presence of a single saturable system, while uptake of non-phloem sugars (glucose and 3-O-methylglucose) exhibited biphasic kinetics with lower uptake rates than those for sucrose and mannitol. The presence of unlabeled mannitol, 3-O-methylglucose and maltose in the incubation solution did not cause inhibition of labeled-sucrose uptake, indicating high carrier specificity and lack of sucrose hydrolysis in vivo. The pH optimum for sucrose uptake was 5–6. Furthermore, a rapid and transient alkalinization of the external media by sucrose indicated a sugar/H+-cotransport mechanism. Dual-labeling experiments showed that sucrose influx continued at a constant rate (V max=15 mol·h-1·(g FW)-1), whereas sucrose efflux was low and insensitive to external concentration. Therefore, the saturable uptake kinetics for sucrose did not appear to be the result of an equilibrium between rates of sucrose influx and efflux.Abbreviations 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzene sulfonate - SE-CC sieve element-companion cell - VB vascular bundle  相似文献   

14.
Wang YY  Tsay YF 《The Plant cell》2011,23(5):1945-1957
This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport.  相似文献   

15.
Mannitol, a major photosynthetic product and transport carbohydrate in many plants, accounts for approximately 50% of the carbon fixed by celery (Apium graveolens L.) leaves. Previous subfractionation studies of celery leaves indicated that the enzymes for mannitol synthesis were located in the cytosol, but these data are inconsistent with that published for the sites of sugar alcohol synthesis in other families and taxa, including apple (Malus) and a brown alga (Fucus). Using antibodies to a key synthetic enzyme, NADPH-dependent mannose-6-phosphate reductase (M6PR), and immunocytochemical techniques, we have resolved both the inter-cellular and intracellular sites of mannitol synthesis. In leaves, M6PR was found only in cells containing ribulose-1,5-bisphosphate carboxylase/oxygenase. M6PR was almost exclusively cytosolic in these cells, with the nucleus being the only organelle to show labeling. The key step in transport carbohydrate biosynthesis that is catalyzed by M6PR displays no apparent preferential association with vascular tissues or with the bundle sheath. These results show that M6PR and, thus, mannitol synthesis are closely associated with the distribution of photosynthetic carbon metabolism in celery leaves. The principal role of M6PR is, therefore, in the assimilation of carbon being exported from the chloroplast, and it seems unlikely that this enzyme plays even an indirect role in phloem loading of mannitol.  相似文献   

16.
Sucrose is the principal transport form of assimilates in most plants. In many species, translocation of assimilates from the mesophyll into the phloem for long distance transport is assumed to be carrier mediated. A putative sucrose proton cotransporter cDNA has been isolated from potato and shown to be expressed mainly in the phloem of mature exporting leaves. To study the in vivo role and function of the protein, potato plants were transformed with an antisense construct of the sucrose transporter cDNA under control of the CaMV 35S promoter. Upon maturation of the leaves, five transformants that expressed reduced levels of sucrose transporter mRNA developed local bleaching and curling of leaves. These leaves contained > 20-fold higher concentrations of soluble carbohydrates and showed a 5-fold increase in starch content as compared with wild type plants, as expected from a block in export. Transgenic plants with a reduced amount of sucrose carrier mRNA show a dramatic reduction in root development and tuber yield. Maximal photosynthetic activity was reduced at least in the strongly affected transformants. The effects observed in the antisense plants strongly support an apoplastic model for phloem loading, in which the sucrose transporter located at the phloem plasma membrane represents the primary route for sugar uptake into the long distance distribution network.  相似文献   

17.
Several plant families generate polyols, the reduced form of monosaccharides, as one of their primary photosynthetic products. Together with sucrose (Suc) or raffinose, these polyols are used for long-distance allocation of photosynthetically fixed carbon in the phloem. Many species from these families accumulate these polyols under salt or drought stress, and the underlying regulation of polyol biosynthetic or oxidizing enzymes has been studied in detail. Here, we present results on the differential regulation of genes that encode transport proteins involved in phloem loading with sorbitol and Suc under salt stress. In the Suc- and sorbitol-translocating species Plantago major, the mRNA levels of the vascular sorbitol transporters PmPLT1 and PmPLT2 are rapidly up-regulated in response to salt treatment. In contrast, mRNA levels for the phloem Suc transporter PmSUC2 stay constant during the initial phase of salt treatment and are down-regulated after 24 h of salt stress. This adaptation in phloem loading is paralleled by a down-regulation of mRNA levels for a predicted sorbitol dehydrogenase (PmSDH1) in the entire leaf and of mRNA levels for a predicted Suc phosphate synthase (PmSPS1) in the vasculature. Analyses of Suc and sorbitol concentrations in leaves, in enriched vascular tissue, and in phloem exudates of detached leaves revealed an accumulation of sorbitol and, to a lesser extent, of Suc within the leaves of salt-stressed plants, a reduced rate of phloem sap exudation after NaCl treatment, and an increased sorbitol-to-Suc ratio within the phloem sap. Thus, the up-regulation of PmPLT1 and PmPLT2 expression upon salt stress results in a preferred loading of sorbitol into the phloem of P. major.  相似文献   

18.
19.
Abstract. Glutaraldehyde fixation was used to determine the solute concentrations in the various cell types present in tissue cultures of squash ( Cucurbita pepo ). Small pieces of callus were plasmolyzed in a graded series of mannitol solutions and fixed in 20 kg m−3 glutaraldehyde adjusted to be isosmotic with the particular plasmolysing solution. The callus samples were further processed using standard electron microscopy techniques. Using this procedure, mature sieve elements that form in squash callus have an osmotic potentional of -2.4MPa. The osmotic potential of the callus sieve elements was comparable to values reported for the sieve tube members of the phloem in intact plants. This ability of callus sieve elements to develop high internal hydrostatic pressures demonstrates that they are capable of phloem loading. However, the osmotic potentials of the surrounding parenchymatous cells and companion cells were only –1.15 and –1.5 MPa, respectively. In contrast to the companion cells of the phloem in intact plant tissues, the osmotic potential of the callus companion cells indicated that they were not directly involved in phloem loading. Several immature sieve elements containing distinct nuclei and vacuoles were observed in the callus granules. These immature sieve elements were plasmolyzed in weaker mannitol solutions (below 0.6kmol m−3) than the enucleate sieve elements (1.01 kmol m−3 mannitol). The low solute concentrations in immature sieve elements indicated that the ability to load sugars occurs concomitantly with the maturation of the sieve element protoplast.  相似文献   

20.
J W Riesmeier  B Hirner    W B Frommer 《The Plant cell》1993,5(11):1591-1598
The major transport form of assimilates in most plants is sucrose. Translocation from the mesophyll into the phloem for long-distance transport is assumed to be carrier mediated in many species. A sucrose transporter cDNA was isolated from potato by complementation of a yeast strain that is unable to grow on sucrose because of the absence of an endogenous sucrose uptake system and the lack of a secreted invertase. The deduced amino acid sequence of the potato sucrose transporter gene StSUT1 is highly hydrophobic and is 68% identical to the spinach sucrose transporter SoSUT1 (pS21). In yeast, the sensitivity of sucrose transport to protonophores and to an increase in pH is consistent with an active proton cotransport mechanism. Substrate specificity and inhibition by protein modifiers are similar to results obtained for sucrose transport into protoplasts and plasma membrane vesicles and for the spinach transporter, with the exception of a reduction in maltose affinity. RNA gel blot analysis shows that the StSUT1 gene is highly expressed in mature leaves, whereas stem and sink tissues, such as developing leaves, show only low expression. RNA in situ hybridization studies show that the transporter gene is expressed specifically in the phloem. Both the properties and the expression pattern are consistent with a function of the sucrose transporter protein in phloem loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号