首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Morand  J F Biellmann 《FEBS letters》1991,289(2):148-150
The cleavage of beta-cyclodextrine by sodium periodate at the seven 2-3 diols of the glucose unit gives rise to the polyaldehyde 1, used to modify alpha-amylase. The reductive modification of alpha-amylase from Bacillus licheniformis reduced the number of reactive lysine groups from 8 to 3.5 per mol of enzyme with an activity loss of 25% and increased the half-life at 80 degrees C from 4.7 to 7.0 minutes.  相似文献   

2.
AIMS: Understanding the origin of high thermostability exhibited by the alpha-amylase produced by a natural strain of Bacillus licheniformis. METHODS AND RESULTS: The MSH320 alpha-amylase gene has been cloned from a native strain of B. licheniformis isolated from flour mill wastewaters in Kashan, central Iran, and its nucleotide sequence was determined (GenBank Accession Number AF438149). Whereas previously cloned B. licheniformisalpha-amylase (BLA) genes are nearly identical, the MSH320 gene coding sequence presents only 93% identity with the reference 'wild-type' BLA gene, most of the nucleotide changes leading to silent mutations. Amino acid substitutions occurred at 19 of the 483 residues of the matured protein, distributed all along the protein sequence. Nevertheless, the natural BLA variant presents thermoinactivation kinetics similar to that of the reference BLA. Protein modelling and structural predictions at the substitution sites suggest that half of the mutations may have a significant stabilizing or destabilizing effect on the protein structure. Compensatory mutations thus occurred in the natural variant in order to maintain thermostability to the level of the reference enzyme. CONCLUSIONS: The exceptional high thermostability of BLA, although produced by a nonthermophilic organism, is not fortuitous but subject to a selective pressure still at work in natural environments. SIGNIFICANCE AND IMPACT OF THE STUDY: BLA thermal performances are not naturally maximized and can be substantially improved by protein engineering.  相似文献   

3.
Expression of alpha-amylase in Bacillus licheniformis.   总被引:1,自引:4,他引:1       下载免费PDF全文
In Bacillus licheniformis, alpha-amylase production varied more than 100-fold depending on the presence or absence of a catabolite-repressing carbon source in the growth medium. alpha-Amylase was produced during the growth phase and not at the onset of the stationary phase. Induction of alpha-amylase correlated with synthesis of mRNA initiating at the promoter of the alpha-amylase gene.  相似文献   

4.
Ca-induced renaturation of Bacillus licheniformis alpha-amylase in the presence of urea has been employed to determine the binding constants of the ion. The native enzyme is folded at 3M urea while the Ca-depleted protein is largely unfolded at this denaturant concentration. Refolding of the protein has been monitored by circular dichroism and the titration curves have been analyzed assuming a model of three independent binding sites. The stoichiometry has been taken from X-ray studies. The refolded protein exhibits a secondary structure that is similar but not identical to that of the native protein. The binding constants have been used to construct a phase diagram that illustrates the contribution of Ca-binding to the resistance against urea unfolding.  相似文献   

5.
In view of a possible application of the alpha-amylase from Bacillus licheniformis as a time-temperature integrator for evaluation of heat processes,(11) thermal inactivation kinetics of the dissolved and covalently immobilized enzyme were studied in the temperature range 90-108 degrees C. The D-values (95 degrees C) for inactivation of alpha-amylase, dissolved in tris-HCl buffer, ranged from 6 to 157 min, depending on pH, ionic strength, and Ca(2+) and enzyme concentration. The z-value fluctuated between 6.2 and 7.6 degrees C. On immobilization of the alpha-amylase by covalent coupling with glutaraldehyde to porous glass beads, the thermoinactivation kinetics became biphasic under certain circumstances. For immobilized enzyme, the D-values (95 degrees C) ranged between 17 and 620 min, depending largely on certain environmental conditions. The z-value fluctuated between 8.1 and 12.9 degrees C. In each case of biphasic inactivation, the z-value of the stable fraction (with the higher D-values) was lower than the z-value of the labile fraction. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
A B Blakeney  B A Stone 《FEBS letters》1985,186(2):229-232
A purified B. licheniformis alpha-amylase in a mixture of ethanol-aqueous buffer (1:1, v/v) retains half the activity shown in water alone. In ethanol-aqueous buffer (7:3, v/v) about 20% of the activity is retained. The pattern of oligosaccharides produced from amylose changed with ethanol concentration; in aqueous buffer the products are: DP 1 and 2, 33.7%; DP 3, 28.5%; DP 4, 4.4% and DP 5, 33.4%. Whereas in ethanol-aqueous buffer (7:3, v/v) the products are DP 1 and 2, 66.8%; DP 3, 17.3%; DP 4, 4.1% and DP 5, 11.8%. These results suggest that a change in substrate affinity at the active centre subsites is induced in the ethanol-aqueous buffer medium.  相似文献   

7.
To elucidate how temperature effects subsite mapping of a thermostable alpha-amylase from Bacillus licheniformis (BLA), a comparative study was performed by using 2-chloro-4-nitrophenyl (CNP) beta-maltooligosides with degree of polymerisation (DP) 4-10 as model substrates. Action patterns, cleavage frequencies and subsite binding energies were determined at 50 degrees C, 80 degrees C and 100 degrees C. Subsite map at 80 degrees C indicates more favourable bindings compared to the hydrolysis at 50 degrees C. Hydrolysis at 100 degrees C resulted in a clear shift in the product pattern and suggests significant differences in the active site architecture. Two preferred cleavage modes were seen for all substrates in which subsite (+2) and (+3) were dominant, but CNP-G1 was never formed. In the preferred binding mode of shorter oligomers, CNP-G2 serves as the leaving group (79%, 50%, 59% and 62% from CNP-G4, CNP-G5, CNP-G6 and CNP-G7, respectively), while CNP-G3 is the dominant hydrolysis product from CNP-G8, CNP-G9, and CNP-Gl0 (62%, 68% and 64%, respectively). The high binding energy value (-17.5 kJ/mol) found at subsite (+2) is consistent with the significant formation of CNP-G2. Subsite mapping at 80 degrees C and 100 degrees C confirms that there are no further binding sites despite the presence of longer products.  相似文献   

8.
The enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis (commercial enzyme Termamyl 300 L Type DX) have been experimentally studied at pH 7.5, within the temperature range of 37-75 degrees C, at initial substrate concentrations of between 0.25 and 2.00 g/L, and enzyme concentrations of between 0.575 x 10(-4) and 13.8 x 10(-4) g/L. To follow the reaction a procedure based on the iodometric method for measuring alpha-amylase activity was used. The kinetics of the enzymatic hydrolysis was fitted to the Michaelis-Menten equation using the integral method, taking into account that the thermal deactivation of the enzyme follows a second-order kinetic. These parameters were fitted to the Arrhenius equation obtaining activation energies of 24.4 and 41.7 kJ/mol and preexponential factors of 734.9 g/L and 1.74 x 10(8) min(-1) for K(M) and k, respectively.  相似文献   

9.
10.
The crystal structure of a thermostable alpha-amylase from Bacillus stearothermophilus (BSTA) has been determined at 2.0 A resolution. The main-chain fold is almost identical to that of the known crystal structure of Bacillus licheniformis alpha-amylase (BLA). BLA is known to be more stable than BSTA. A structural comparison between the crystal structures of BSTA and BLA showed significant differences that may account for the difference in their thermostabilities, as follows. (i) The two-residue insertion in BSTA, Ile181-Gly182, pushes away the spatially contacting region including Asp207, which corresponds to Ca(2+)-coordinating Asp204 in BLA. As a result, Asp207 cannot coordinate the Ca(2+). (ii) BSTA contains nine fewer hydrogen bonds than BLA, which costs about 12 kcal/mol. This tendency is prominent in the (beta/alpha)(8)-barrel, where 10 fewer hydrogen bonds were observed in BSTA. BLA forms a denser hydrogen bond network in the inter-helical region, which may stabilize alpha-helices in the barrel. (iii) A few small voids observed in the alpha-helical region of the (beta/alpha)(8)-barrel in BSTA decrease inter-helical compactness and hydrophobic interactions. (iv) The solvent-accessible surface area of charged residues in BLA is about two times larger than that in BSTA.  相似文献   

11.
The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconut, a high concentration (3%) of linseed or mustard, and an Rintermediate concentration (2%) of cotton, madhuca, or sesame. The oilseed cakes made of groundnut or mustard could completely replace the conventional peptone-beef extract medium as the fermentation base for the production of alpha-amylase by B. licheniformis. The addition of corn steep liquor to cotton, linseed, sesame, or madhuca cake in the medium improved alpha-amylase production.  相似文献   

12.
In the present work, indigenously prepared rigid superporous (pore size of approximately 3 microm) cross-linked cellulose matrix (CELBEADS) has been used as a support for the immobilization of Bacillus licheniformis alpha-amylase (BLA). Optimum pH and temperature, and Michaelis-Menten constants were determined for both free and immobilized BLA. Immobilized BLA was observed to produce a different saccharide profile than free BLA at any value of dextrose equivalent. It was observed that pH, temperature, and initial starch concentration has a significant effect on the saccharide profile of starch hydrolysate produced using immobilized BLA in the batch mode, whereas the ratio of concentration of enzyme units to initial starch concentration has no influence on the same. Hence immobilized BLA can be used as an additional tool for production of maltodextrins with different saccharide profiles. Immobilized BLA has better thermostability than free BLA. Immobilized BLA was found to retain full activity even after eight batches of hydrolysis, each of 8h duration at 55 degrees C and 90 mg/mL initial starch concentration. A semiempirical model has been used for the prediction of saccharide composition of starch hydrolysate with respect to time.  相似文献   

13.
alpha-Amylase from Bacillus licheniformis has been crystallized by the hanging-drop vapor diffusion method in the presence of calcium ions using ammonium sulfate as precipitant. The crystals are tetragonal, belonging to the space group P4(1)2(1)2 (or P4(3)2(1)2), with unit cell dimensions of a = 119.9 and c = 85.4 A. The asymmetric unit contains one molecule of alpha-amylase, with a crystal volume per protein mass (VM) of 2.78 A3/Da. The crystals diffract to better than 2.0 A Bragg spacing when exposed to synchrotron X-rays and they are reasonably stable in the X-ray beam. Thus the crystals are suitable for structure determination at high resolution by X-ray methods.  相似文献   

14.
Bacillus licheniformis alpha-amylase (BLA) is routinely used as a model thermostable amylase in biochemical studies. Its starch hydrolysis activity has recently been studied in Tris buffer. Here, we address the question that whether the application of Tris buffer may influence the results of BLA activity analyses. Based on the inhibition studies and docking simulations, we suggest that Tris molecule is a competitive inhibitor of starch-hydrolyzing activity of BLA, and it has a high tendency to bind the enzyme active site. Hence, it is critically important to consider such effect when interpreting the results of activity studies of this enzyme in Tris buffer.  相似文献   

15.
The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconut, a high concentration (3%) of linseed or mustard, and an Rintermediate concentration (2%) of cotton, madhuca, or sesame. The oilseed cakes made of groundnut or mustard could completely replace the conventional peptone-beef extract medium as the fermentation base for the production of alpha-amylase by B. licheniformis. The addition of corn steep liquor to cotton, linseed, sesame, or madhuca cake in the medium improved alpha-amylase production.  相似文献   

16.
The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.  相似文献   

17.
Summary The surface-active compounds of the strain Bacillus licheniformis were isolated and their structure was elucidated. The high surface-active capacity of the crude extract was basically due to traces of long-chain saturated fatty acids, especially of palmitic and stearic acids, to a mixture of small amounts of hydrocarbons with chain lengths of 20 and 22 carbons, and mainly to appreciable amounts of four slightly different lipopeptides. The lipopeptides were found to be a mixture of four closely related compounds. The lipophilic part consisting of i-, n-C14 or i-, ai-C15 -OH fatty acids was linked to the hydrophilic peptide moiety, which contained seven amino acids (Glu, Asp, Val, three Leu and Ile) by a lactone linkage. Fifteen milligrams per litre of the purified lipopeptide product decreased the surface tension of water from 72 mN m–1 to 27 mN m–1, characterizing the product as a powerful surface-active agent that compares favourably to other (bio)surfactants. Antibiotic activity was demonstrated against bacteria and yeasts. Offsprint requests to: O. Käppeli  相似文献   

18.
Pro-sequences were swapped in cis between keratinases from Bacillus licheniformis (Ker BL) and Bacillus pumilus (Ker BP) to construct Ker ProBP-BL and Ker ProBL-BP, respectively. Expression of these keratinases was carried out constitutively by E. coli HB101-pEZZ18 system. They were characterized with respect to their parent enzymes, Ker BL and Ker BP, respectively. Ker ProBP-BL became more thermostable with a t(1/2) of 45 min at 80°C contrary to Ker BL which was not stable beyond 60°C. Similarly, the activity of Ker ProBP-BL on keratin and casein substrate, i.e. K:C ratio increased to 1.2 in comparison to 0.1 for Ker BL. Hydrolysis of insulin B-chain revealed that the cleavage sites increased to six from four in case of Ker ProBP-BL in comparison to Ker BL. However, cleavage sites decreased from seven to four in case of Ker ProBL-BP in comparison to the parent keratinase, Ker BP. Likewise, Ker ProBL-BP revealed altered pH and temperature kinetics with optima at pH 10 and 60°C in comparison to Ker BP which had optima at pH 9 and 70°C. It also cleaved soluble substrates with better efficiency in comparison to Ker BP with K:C ratio of 1.6. Pro-sequence mediated conformational changes were also observed in trans and were almost similar to the features acquired by the chimeras constructed in cis by swapping the pro-sequence region.  相似文献   

19.
It is generally assumed that in proteins hydrophobic residues are not favorable at solvent-exposed sites, and that amino acid substitutions on the surface have little effect on protein thermostability. Contrary to these assumptions, we have identified hyperthermostable variants of Bacillus licheniformis alpha-amylase (BLA) that result from the incorporation of hydrophobic residues at the surface. Under highly destabilizing conditions, a variant combining five stabilizing mutations unfolds 32 times more slowly and at a temperature 13 degrees C higher than the wild-type. Crystal structure analysis at 1.7 A resolution suggests that stabilization is achieved through (a) extension of the concept of increased hydrophobic packing, usually applied to cavities, to surface indentations, (b) introduction of favorable aromatic-aromatic interactions on the surface, (c) specific stabilization of intrinsic metal binding sites, and (d) stabilization of a beta-sheet by introducing a residue with high beta-sheet forming propensity. All mutated residues are involved in forming complex, cooperative interaction networks that extend from the interior of the protein to its surface and which may therefore constitute "weak points" where BLA unfolding is initiated. This might explain the unexpectedly large effect induced by some of the substitutions on the kinetic stability of BLA. Our study shows that substantial protein stabilization can be achieved by stabilizing surface positions that participate in underlying cooperatively formed substructures. At such positions, even the apparently thermodynamically unfavorable introduction of hydrophobic residues should be explored.  相似文献   

20.
Comparative analysis of genome sequence data from mesophilic and hyperthermophilic micro-organisms has revealed a strong bias against specific thermolabile amino-acid residues (i.e. N and Q) in hyperthermophilic proteins. The N + Q content of class II xylose isomerases (XIs) from mesophiles, moderate thermophiles, and hyperthermophiles was examined. It was found to correlate inversely with the growth temperature of the source organism in all cases examined, except for the previously uncharacterized XI from Bacillus licheniformis DSM13 (BLXI), which had an N + Q content comparable to that of homologs from much more thermophilic sources. To determine whether BLXI behaves as a thermostable enzyme, it was expressed in Escherichia coli, and the thermostability and activity properties of the recombinant enzyme were studied. Indeed, it was optimally active at 70-72 degrees C, which is significantly higher than the optimal growth temperature (37 degrees C) of B. licheniformis. The kinetic properties of BLXI, determined at 60 degrees C with glucose and xylose as substrates, were comparable to those of other class II XIs. The stability of BLXI was dependent on the metallic cation present in its two metal-binding sites. The enzyme thermostability increased in the order apoenzyme < Mg2+-enzyme < Co2+-enzyme approximately Mn2+-enzyme, with melting temperatures of 50.3 degrees C, 53.3 degrees C, 73.4 degrees C, and 73.6 degrees C. BLXI inactivation was first-order in all conditions examined. The energy of activation for irreversible inactivation was also strongly influenced by the metal present, ranging from 342 kJ x mol(-1) (apoenzyme) to 604 kJ x mol(-1) (Mg2+-enzyme) to 1166 kJ x mol(-1) (Co2+-enzyme). These results suggest that the first irreversible event in BLXI unfolding is the release of one or both of its metals from the active site. Although N + Q content was an indicator of thermostability for class II XIs, this pattern may not hold for other sets of homologous enzymes. In fact, the extremely thermostable alpha-amylase from B. licheniformis was found to have an average N + Q content compared with homologous enzymes from a variety of mesophilic and thermophilic sources. Thus, it would appear that protein thermostability is a function of more complex molecular determinants than amino-acid content alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号