首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Carbon monoxide poisoning is a major cause of morbidity and mortality worldwide. Immediate and proper treatment is crucial for prognosis and is merely dependent on accurate diagnosis. However, correct diagnosis can be difficult due to the aspecific symptomatology in CO poisoning. In this report a case is discussed in which a patient with accidental CO poisoning presented primarily with syncope, extensive ECG changes and elevated troponin levels. In addition, a limited review of the current literature is provided.  相似文献   

13.
14.
15.
16.
17.
Carbon monoxide (CO) is the leading cause of death by poisoning worldwide. The aim was to explore the effects of mild and severe poisoning on blood gas parameters and metabolites. Eleven pigs were exposed to CO intoxication and had blood collected before and during poisoning. Mild CO poisoning (carboxyhaemoglobin, COHb 35.2 ± 7.9%) was achieved at 32 ± 13 minutes, and severe poisoning (69.3 ± 10.2% COHb) at 64 ± 23 minutes from baseline (2.9 ± 0.5% COHb). Blood gas parameters and metabolites were measured on a blood gas analyser and nuclear magnetic resonance spectrometer, respectively. Unsupervised principal component, analysis of variance and Pearson's correlation tests were applied. A P-value ≤ .05 was considered statistically significant. Mild poisoning resulted in a 28.4% drop in oxyhaemoglobin (OHb) and 12-fold increase in COHb, while severe poisoning in a 65% drop in OHb and 24-fold increase in COHb. Among others, metabolites implicated in regulation of metabolic acidosis (lactate, P < .0001), energy balance (pyruvate, P < .0001; 3-hydroxybutyrc acid, P = .01), respiration (citrate, P = .007; succinate, P = .0003; fumarate, P < .0001), lipid metabolism (glycerol, P = .002; choline, P = .0002) and antioxidant-oxidant balance (glutathione, P = .03; hypoxanthine, P < .0001) were altered, especially during severe poisoning. Our study adds new insights into the deranged metabolism of CO poisoning and leads the way for further investigation.  相似文献   

18.
We investigated dexamethasone therapy for preventing delayed encephalopathy after carbon monoxide (CO) poisoning. Eighty healthy male rats were exposed to CO and randomly divided into four groups: hyperbaric oxygen treatment (H), treatment (D), combined hyperbaric and dexamethasone treatment (C), and a control (M) group in which the rats inhaled CO to coma in the hyperbaric oxygen chamber, then were removed without further treatment. Twelve rats were put into the hyperbaric oxygen chamber and treated with air for 60 min (N) group. An eight arm maze was used to evaluate cognitive and memory abilities of these mice. Serum myelin basic protein (MBP) levels were evaluated using ELISA, and magnetic resonance imaging was used to observe brain demyelination and morbidity associated with delayed encephalopathy. A sample of the hippocampus from each group was examined by light microscopy. Cognitive and memory functions decreased in the control group M. Three days after CO poisoning, the serum MBP level of each group increased significantly. On Day 10 after CO poisoning, the MBP levels in groups C and D decreased significantly, but returned to normal on Day 18. MBP levels in the M and H groups were elevated at all time points. Brain MRIs showed significant differences among C, D, H and control M groups. Hematoxylin & eosin staining of the hippocampus showed greater damage in the control M and H groups. Early dexamethasone treatment may be useful for preventing delayed encephalopathy after CO poisoning and may reduce serum MBP levels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号