首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specific activities of crude and purified Coprinus cinereus laccase preparations could be enhanced by a factor of 10-12 by activation with copper ions. The copper to protein contents of purified non-activated laccase were 2.3 ± 0.1 compared to 3.3 ± 0.1 in purified activated laccase indicating that only a fraction of the laccase can be activated. Purified laccase not activated with copper ions shows in isoelectric focusing four bands in order of decreasing pI in a ratio 1/5/3/1 where only bands I and II had laccase activity. Purified activated laccase showed only three bands (I, II and III) in the ratio 5/4/1 all with some laccase activity. The pH profile of the activity for activated and non-activated laccase showed identical behavior indicating that the active forms were the same. The change in UV-Vis around 330 nm following the depletion and reconstitution of the enzyme combined with activity measurements supports the reversibility of the selective removal and insertion of copper ions at the type 2 site. The circular dichroism spectrum of activated purified laccase has characteristic changes around 350 nm relative to non-activated laccase indicative of changes at the type 2/type 3 sites. The difference between the electron paramagnetic resonance spectra of non-activated and activated C. cinereus laccase indicates that a fraction of the non-activated purified laccase contained a copper(II) signal with a coupling constant between a type 1 and a type 2 copper(II). This electron paramagnetic resonance signal could be explained by an induced asymmetry in the type 3 site due to a missing type 2 copper ion.  相似文献   

2.
The Type 3 copper site is intact but labile in Type 2-depleted laccase   总被引:1,自引:0,他引:1  
We report results of experiments designed to characterize the Type 1 and Type 3 copper sites in Rhus laccase depleted of Type 2 copper (T2D). Use of the Lowry method for determining protein concentration yielded the value 5620 +/- 570 M-1 cm-1 for the extinction of the 615-nm absorption band of this protein. Anaerobic reductive titrations with Ru(NH)3)6(2)+ and Cr(II)aq ions established the presence of three electron-accepting centers, which are reduced in a complex manner. Treatment of T2D laccase with a 70-fold excess of H2O2 induced a new shoulder at 330 nm (delta epsilon = 660 M-1 cm-1), as well as intensity perturbations at 280 and 615 nm. Comparison of difference spectra show that this 330-nm band derives from a Type 3 copper-bound peroxide and not from a reoxidized Type 3 site. Dioxygen reoxidation of ascorbate-reduced T2D laccase produced new difference bands at 330 nm (delta epsilon = 770 M-1 cm-1) and 270 nm (delta epsilon = 13,000 M-1 cm-1), the former assigned to a bound peroxide which is a dioxygen reduction intermediate. In the corresponding epr spectrum of this material new Cu(II) g parallel features (A parallel approximately 130 G) indicative of an isolated copper ion and a triplet signal near 3,400 G were observed, originating from the Type 3 sites of separate T2D laccase molecules. Reoxidation by ferricyanide or by dioxygen as mediated by iron hexacyanide did not produce these changes. Thus the magnetism of the reoxidized Type 3 site in T2D laccase can be perturbed as a consequence of aerobic turnover. The suggestion is advanced that there are presently three forms of T2D laccase, possibly metastable conformational isotypes, accounting for the apparently contradictory reports on the properties of this protein.  相似文献   

3.
From the peelings of cucumber Cucumis sativus and marrow squash Cucurbita pepo var. giramontia highly purified ascorbate oxidase preparations were obtained. Molecular weights, optical and EPR spectra, total copper contents and different type copper contents of the both proteins were similar. The effects of NaN3, KCN, I- and F- on the optical and EPR spectra of the proteins were studied. The incubation of ascorbate oxidase with these anions lead to the partial reduction of the copper. The data obtained indicate that F- is bound to the copper atoms of the type 2, and that N5- modifies surroundings of these copper atoms. The copper atoms of types 1 and 2 in both ascorbate oxidases, unlike fungal laccase, are completely reduced under effect of CN-. The bleaching of ascorbate oxidase, observed in alkaline media involves also increasing of the intensity of the band at 330 nm. The results show that three types of copper in ascorbate oxidase have various sensitivities to the inorganic anions. These data are compared with results observed for another blue copper-containing enzymes, such as laccases and ceruloplasmin.  相似文献   

4.
The low temperature (77 K) irradiation of oxidized ceruloplasmin and Rhus vernicifera laccase at the 330 nm absorption which arises from type 3 copper leads to the reduction of type 1 copper as demonstrated by bleaching of the 610 nm chromophore and the decrease of the EPR signal associated with this species. Type 2 copper remains unaffected. Concomitant with the type 1 copper reduction, a new EPR signal which is possibly that of a biradical appears. Upon thawing, type 1 copper is reversibly oxidized and the radical signal disappears. Irradiation of oxidized protein at the absorption band of type 1 copper produces no spectral change. An EPR study at room temperature confirms the wave-length specificity and reversibility of the photoreduction of type 1 copper and radical formation. Radical appearance and disappearance at room temperature are extremely slow (tau1/2 approximately 30 min). Optical studies at room temperature show that upon anaerobic irradiation of laccase in the 330 nm absorption band, both type 3 and type 1 chromophores are slowly reduced. Upon return to the dark and in the presence of O2, both type 3 and type 1 centers are reoxidized. Oxidizing equivalents either from O2 or K3Fe(CN)6 are required for the reoxidation reaction. These studies demonstrate that there is a direct energy transfer between type 3 and type 1 copper sites in blue copper oxidases.  相似文献   

5.
In order to investigate the extent of the relationship between the three copper-containing glycoproteins, laccases I, II and III (Mr70000, 80000 and 390000 respectively) of Podospora anserina, the following experiments were carried out on laccases II and III: (a) determination of amino acid composition; (b) determination of N-terminal and C-terminal amino acid; (c) determination of sugar composition; (d) dissociation studies on native and denatured laccases and also after removal of copper from the enzymes; (e) digestion of the carbohydrate moieties with the aid of glycosylhydrolases. A comparison between the results of these experiments and data previously obtained with laccase I allows the following conclusions to be drawn. 1. Laccases II and III are not identical. 2. Neither of these low molecular weight laccases are as complete molecules subunits of the oligomeric laccase I. 3. The possibility of partial identity of amino acid sequences of laccases I and III can not be excluded. 4. Laccase II possibly consists of subunits of Mr37000 whereas laccase III does not. 5. Digestion of 50% of the carbohydrate content leads to complete loss of serological specificity (serological reaction and cross reaction). This finding is discussed with regard to the possible role of the carbohydrate moiety as antigenic determinants and thus as the reason for the immunological relationship. As a consequence, at least three independent structural genes for laccases must be assumed.  相似文献   

6.
Constant laccase activities were detected in culture supernatant of newly isolated basidiomycete Trametes gallica. Tryptone and glucose have great effects on the production of laccase. Two laccase isoenzymes (Lac I and Lac II) produced by T. gallica were purified to homogeneity (51- and 50-fold, respectively) by gel filtration chromatography, anion exchange chromatography, and improved native PAGE, with an overall yield of 24.8%. Lac I and Lac II from this fungus are glycoproteins with 3.6% and 4% carbohydrate content, the same molecular masses (by SDS-PAGE) of 60 kDa, and the pI of 3.1 and 3.0, respectively. Native gel electrophoresis indicates that the two laccases have different migration ratios. Lac I and Lac II have the same optimal pH of 3.0 on 2,6-dimethoxyphenol (DMP), pH 2.2 on 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and of pH 4.0 on guaiacol. The highest rate of ABTS oxidation for both laccases was reached at 70 degrees C. Both laccases are stable from pH 6 to 9, retaining 88-90% activity after 24 hr incubation, and show good stability when incubated at temperatures lower than 40 degrees C. The Km values of Lac I for ABTS, DMP, and guaiacol are 0.118 x 10(-2), 0.420, and 0.405 mM, respectively; the Km values of Lac II for ABTS, DMP, and guaiacol are 0.086 x 10(-2), 0.41, and 0.40 mM, respectively. Their N-terminal sequences are determined and show strong similarity with those from other basidiomycetes. Graphite-furnace atomic absorption analysis revealed that both laccases have four copper atoms per protein molecule, but they have no type I copper signal at around 600 nm and a type III copper signal near 330 nm. Cyanide, azide, and halides completely inhibit the enzyme activity, whereas EDTA has less inhibition.  相似文献   

7.
《Inorganica chimica acta》1988,152(2):139-143
The visible and magnetic circular dichroism (MCD) spectra of Co(II) derivatives of Rhus vernicifera laccase are reported. Anaerobic incorporation of 1 g-atom of Co(II) into apolaccase gave bands at 528(ϵ = 248), 558 (254) and 589 nm (shoulder) attributable to dd transitions. The MCD spectrum in the corresponding region is similar to that of Co(II)-substituted hemocyanin, indicating that the Co(II) ion incorporated into apolaccase is tetrahedral. On increasing the amount of Co(II) ion acting on the apolaccase, both the intensities of the absorption and the MCD spectra increased, and 2 g-atoms of tetrahedral Co(II) ion were introduced into the apolaccase. Very similar absorption and MCD spectra were obtained when laccase whose type I copper site was occupied by Hg(II) and both type II and type III copper sites were vacant (TlHg apolaccase) was treated with Co(II); this clearly supports the hypothesis that Co(II) cannot be incorporated into a type I copper site but may possibly be incorporated into a type III copper site. A tetrahedral Co(II) ion was also introduced into a type II copper site of type II copper-depleted (T2D) laccase, although its MCD bands were shifted ca. 20 nm to the longer wavelength region from the MCD bands due to tetrahedral Co(II) ion incorporated into type III copper site(s). The present study demonstrate that a tetrahedral Co(II) ion is introduced into type II or type III copper site(s) of laccase.  相似文献   

8.
Reduction process of cucumber ascorbate oxidase with L-ascorbate was investigated in detail through absorption and electron paramagnetic resonance (EPR) spectra under anaerobic condition. One of the three type I coppers (the type I copper which is oxidized rapidly (Sakurai, T. et al. (1985) Biochem. Biophys. Res. Commun. 131, 647-652)) and a pair of type III coppers only which contribute to the absorption at 330 nm were reduced faster than other two type I and the other pair of type III coppers, respectively. The principal active site of ascorbate oxidase was confirmed to be comprised of one type I, one type II and a pair of type III coppers. Type II copper seemed to be reduced after all type I and type III coppers have been reduced.  相似文献   

9.
The paper reports on two fungal laccases from Coriolus hirsutus and Coriolus zonatus and their type-2 copper-depleted derivatives. Temperature-induced changes of the copper centers were characterized by optical and electron paramagnetic resonance (EPR) spectroscopy, and the overall protein stability by differential scanning microcalorimetry. The intact enzymes showed highly cooperative thermal unfolding transitions at about 90 degrees C. Type-2 copper depletion led to uncoupling of the domains characterized by a different melting pattern which resolved three subtransitions. Melting curves monitored optically at 290, 340 and 610 nm showed additional transitions below thermal unfolding temperature. EPR spectra of the intact laccases showed the disintegration of the trinuclear copper cluster accompanied by loss of one of the copper ions and disappearance of the strong antiferromagnetic coupling in the type-3 site at 70 degrees C and above 70 degrees C. The copper centers of type-2 copper-depleted laccase showed reduced thermotolerance.  相似文献   

10.
1. Spectroscopic and functional properties of Japanese-lacquer-tree (Rhus vernicifera) laccase were re-investigated, with special emphasis on the relationships between the different types of copper centres (Types 1, 2, and 3). 2. On removal of the Type 2 Cu(II), a decrease of absorbance occurred in the wavelength region above 650 nm (delta epsilon 750 = 300 M-1 . cm-1) and around 330 nm (delta episom 330 up to 2200 M-1 . cm-1). 3. Reductive titrations with ascorbic acid or ferrocyanide showed that the electron-accepting capacity of the partial apoprotein is one electron-equivalent lower than that of the native protein, i.e. the protein two-electron acceptor is present in the oxidized state in spite of absorbance loss at 330 nm. 4. The 330 nm chromophore apparently depends on the presence of both the Type 2 and the Type 3 copper in the oxidized state. 5. This finding may have implications in the relative location of Type 2 and 3 copper centres and on the redox behaviour of laccase.  相似文献   

11.
A new lignin-degrading basidiomycete, strain PM1 (= CECT 2971), was isolated from the wastewater of a paper factory. The major ligninolytic activity detected in the basidiomycete PM1 culture supernatant was a phenoloxidase (laccase). This activity was produced constitutively in defined or complex media and appeared as two protein bands in native gel electrophoresis preparations. No enzyme induction was found after treatment with certain potential laccase inducers. Laccase I was purified to homogeneity by gel filtration chromatography, anion-exchange chromatography, and hydrophobicity chromatography. The enzyme is a monomeric glycoprotein containing 6.5% carbohydrate and having a molecular weight of 64,000. It has an isoelectric point of 3.6, it is stable in a pH range from 3 to 9, and its optimum pH is 4.5. The laccase optimal reaction temperature is 80 degrees C, the laccase is stable for 1 h at 60 degrees C, and its activity increases with temperature. Spectroscopic analysis revealed that the enzyme has four bound copper atoms, a type I copper, a type II copper, and a type III binuclear copper. The amino-terminal sequence of the protein is very similar to the amino-terminal sequences of laccases from Coriolus hirsutus and Phlebia radiata.  相似文献   

12.
T Imae  S Ikeda 《Biopolymers》1975,14(6):1213-1221
Circular dichroism and absorption spectra are measured on mixed solutions of acridine orange and poly(S-carboxymethyl-L -cysteine) at different pH and P/D mixing ratios. The observed circular dichroism spectra are classified into several types, mainly based on the number and sign of circular dichroic bands in the visible region. Three of them are associated with the absorption spectra characteristic of dimeric dye or higher aggregates of dye. Type I is observed with solutions, of which the pH is acid and P/D is higher than 4, and it has an unsymmetrical pair of positive and negative dichroic bands at 470 and 430 nm. This type is induced on the dye bound to the polymer in the β-conformation. Types II and III are considered to be characteristic of randomly coiled polymers. Type II is exhibited by solutions of P/D higher than 1 at pH 5–7 and has two dichroic bands around the same wavelengths as Type I but with opposite signs and an additional positive band at 560 nm. Type III, shown by solutions of P/D 2–0.6 at pH 6–10.5, has three dichroic bands around the same wavelengths as Type II but with signs opposite to it. The other two types of circular dichroism, induced for the solutions of P/D less than 1 at slightly acid pH, are associated with the absorption spectra of monomeric dye and are observed with disordered or randomly coiled polymer. They have a pair of dichroic bands at 540 and 425 nm, and the signs of these bands are opposite to each other in these two types.  相似文献   

13.
1. Recent magnetic susceptibility measurements on laccase (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) from the lacquer tree Rhus vernicifera showed a deviation from Curie behaviour above 50 K, which was taken as evidence for an antiferromagnetically coupled Cu(II)-Cu(II) pair in the oxidized enzyme. The magnetic susceptibility of this protein has been reinvestigated. Further measurements on laccase from the fungus Polyporus versicolor and human ceruloplasmin (iron(II):oxygen oxidoreductase, EC 1.16.3.1) are presented. 2. The magnetic susceptibility of fungal laccase and lacquer tree laccase can be accounted for by the EPR detectable copper ions in the temperature range 40--300 K. 3. If an antiferromagnetically coupled Cu(II)-Cu(II) pair exists in the laccases, then the coupling, expressed as --J, should be at least of the order of 300 cm-1, as deduced from the Curie dependence of the susceptibility and the sensitivity in our measurements. 4. If an analogy with the laccases is assumed for the EPR invisible copper in ceruloplasmin then a limiting value of the coupling may be deduced also in this case, with --J at least of the order of 200 cm-1.  相似文献   

14.
Electron spin-echo decay envelopes for types I and II copper of Rhus vernicifera laccase and for type II copper of procine ceruloplasmin have been studied. Nuclear modulation patterns show that imidazole is a ligand for all of them. The linear electric field effect (LEFE) in EPR was studied for type I copper in a laccase preparation from which type II had been removed. The symmetry of the site is near tetrahedral and the magnitude of the LEFE is correlated with the intensity of blue color.  相似文献   

15.
New epr features consistent with a novel type of Cu(II) are observed in partially reduced Type 2 copper depleted laccase molecules. Cu(II) hyperfine lines appear near 2590 G and 2770 G, and a rhombic g1 feature is also observed. These reflect a Cu(II) emergent on reductive disruption of the binuclear Type 3 site in T2D laccase. Additionally, much of the new, magnetically isolated Cu(II) is retained on full reoxidation of partly reduced Type 2 copper depleted laccase. The proportion of disrupted Type 3 Cu(II) sites remaining after reoxidation appears to depend on the prior distribution of electrons within T2D laccase.  相似文献   

16.
The effect of binding of N3-, SCN-, OCN-, and F- to bovine ceruloplasmin (Cp) has been studied in detail using absorption, circular dichroic (CD), and electron paramagnetic resonance (EPR) spectroscopies. With the addition of increasing amounts of N3-, SCN-, and OCN- to a Cp solution, the intensity of the band at 614 nm at first increased several percent and then decreased gradually as at least one type I copper was reduced and/or as the type I copper was changed to type II copper. Concomitantly, new bands appeared at 430 and 365 nm for N3-, 435 and 380 nm for SCN-, and about 390 nm for OCN-. A conformational change in the protein induced by the binding of N3-, SCN-, and OCN- to the type II and type III coppers led to the change in the CD spectra. The observed increase of the band at about 430 nm was attributed to the change occurring at the type I copper site. On the other hand, the band at about 370 nm may come from a charge transfer of coordinated anions to the Cu(II) ion. Fluoride ion did not induce the appearance of the band at around 430 and 370 nm, but the parallel component of the type II copper EPR signal was split upon the binding of two fluoride ions to the copper ion.  相似文献   

17.
The aerobic interaction between ascorbate oxidase and L-tyrosine, L-3,4-dihydroxyphenylalanine or 3,4-dihydroxycinnamic acid in 1:10 molar ratio was followed by optical absorption, CD and EPR spectroscopy in 0.1 M phosphate buffer at pH 5.0. While the spectra of the system ascorbate oxidase—L-tyrosine remain practically unaffected after several hours, indicating that no oxidation of the amino acid occurs in the conditions employed, rather drastic changes can be observed in the spectra of the ascorbate oxidase-catechol systems. In particular, while the optical absorption below 500 nm increases markedly due to the formation of the substrate oxidation products, an irreversible decrease in intensity of the absorption, CD and EPR spectral features associated with the blue copper(II) chromophores indicates that a partial loss of Type 1 copper by ascorbate oxidase has occurred during this secondary catechol oxidase activity. A copper species characterized by weak positive CD activity at 370 nm and EPR signal at intermediate field between those of the Type 2 and Type 1 coppers can be detected in the early stages of the reaction. The irreversible damage undergone by the protein during catechol oxidase activity may have biological significance and accounts for the low yield of purified enzyme obtained when the crude enzyme extract is left in prolonged contact with low molecular weight cell components, rich in σ-diphenolic compounds.  相似文献   

18.
Nitric oxide (NO) has previously been reported to modify the EPR spectrum of multicopper blue oxidases, disclosing a pure type 2 copper and inducing half-field transitions at g = 4. In the present work the reactivity of NO was reinvestigated with respect to ceruloplasmins having an apparently EPR-silent type 2 copper in their native state. The optical properties of NO-treated ceruloplasmin were independent of the initial redox state of the metal sites. Addition of NO caused the absorption at 600 nm to decrease in the case of oxidized ceruloplasmin and to increase when starting from the reduced proteins. In this latter case the absorbance at 330 nm was also restored, indicating that NO was able to reoxidize the reduced protein. In all cases the band at 600 nm leveled to ca. 60% of the intensity of the native untreated protein, and new bands below 500 nm appeared in the spectra. While the blue absorption band was restored by removal of NO, the absorbance below 500 nm remained higher even after dialysis. The EPR spectrum resulting from reaction of NO with either oxidized, partially reduced, or fully reduced ceruloplasmin consisted in all cases of a broad, structureless resonance around g = 2. NO caused the reversible disappearance of the type 1 copper EPR spectrum in oxidized ceruloplasmin. Also, the transient novel copper signal that arises during the anaerobic reduction process by ascorbate completely disappeared in the presence of NO and did not reappear upon removal of the gas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Resonance-Raman spectra of Japanese-lacquer-tree (Rhus vernicifera) laccase, type-2-copper-depleted laccase and the latter form treated with H2O2 were measured in liquid and frozen solution, on excitation into the 600 nm absorption band. Significant changes in intensity and/or frequency of the bands lying in the 370-430 cm-1 region were observed on freezing, indicating local structural rearrangements taking place at the blue copper site. These findings corroborate previous suggestions based on e.p.r. measurements and redox data [Morpurgo, Calabrese, Desideri & Rotilio (1981) Biochem. J. 193, 639-642]. They show the strong dependence of the physical properties of blue copper centres on local symmetry. Some conclusions on the origin of the Raman bands are also drawn.  相似文献   

20.
The interactions of one-electron reduced metronidazole (ArNO2.-) and O2.- with native and Type-2-copper-depleted Vietnamese- and Japanese-lacquer-tree laccases were studied in aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. On reaction with ArNO2.-, in the absence of O2, the holo- and the Type-2-copper-depleted proteins accept, with reduction of Type 1 copper, 2 and 1 reducing equivalents respectively. On reaction with O2.- of both holo- and Type-2-copper-depleted Vietnamese-lacquer-tree laccase, almost complete reduction of Type 1 copper was observed and, after completion of the reaction, some (less than 20%) reoxidation of Type 1 copper occurs. Reduction of Type 1 copper of the laccases by these one-electron donors occurs via a bimolecular step; however, the rate of reduction of Vietnamese-lacquer-tree laccase is over 10 times that of Japanese-lacquer-tree laccase. It is inferred that electrons enter the protein via Type 1 copper with, in the case of the holoprotein, subsequent rapid intramolecular transfer of 1 reducing equivalent within the protein. Furthermore it is suggested that intra-molecular electron transfer to Type 3 copper atoms is slow and, in the case of Type-2-copper-depleted protein, may not occur. This slow process may partially account for the variation of the catalytic activities of 'blue' oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号