首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mannitol-containing oligosaccharides have been isolated from a rat brain proteoglycan after mild alkaline borohydride treatment under conditions which prevent "peeling." Their structural properties were studied by gas-liquid chromatography-mass spectrometry of disaccharides as their trimethylsilylated and permethylated derivatives, methylation, analysis, specific degradations, and CrO3 oxidation. The following components were identified: Gal(beta 1 leads to 4) [Fuc(alpha 1 leads to 3)]GlcNAc(beta 1 leads to 3)Manol,GlcNAc(beta 1 leads to 3)Manol, and Manol. Evidence was also obtained for the occurrence of a sialylated oligosaccharide and another (possibly sulfated) acidic oligosaccharide, both having the sequence GlcNAc(beta 1 leads to 3)Manol at their proximal ends. These mannitol-containing oligosaccharides constitute a novel group of alkali-labile oligosaccharides in mammalian glycoconjugates. The origin of the oligosaccharides and the possible occurrence of a carbohydrate-peptide linkage involving mannose are discussed.  相似文献   

2.
A large Mr chondroitin sulfate proteoglycan was extracted from the media of human aorta under dissociative conditions and purified by density-gradient centrifugation, ion-exchange chromatography, and gel filtration chromatography. Removal of a contaminating dermatan sulfate proteoglycan was accomplished by reduction, alkylation and rechromatography on the gel filtration column. After chondroitinase ABC treatment, the proteoglycan core was separated from a residual heparan sulfate proteoglycan by a third gel filtration chromatography step. As assessed by radioimmunoassay, the isolated proteoglycan core was free of link protein, but possessed epitopes that were recognized by antisera against the hyaluronic acid binding region of bovine cartilage proteoglycan as well as those that were weakly recognized by anti-keratan sulfate antisera. Following beta-elimination of the protein core, the liberated low Mr oligosaccharides were partially resolved by Sephadex G-50 chromatography, and their primary structure was determined by 500-MHz1H NMR spectroscopy in combination with compositional sugar analysis. The N-glycosidic carbohydrate chains, which were obtained as glycopeptides, were all biantennary glycans containing NeuAc and Fuc; microheterogeneity in the NeuAc----Gal linkage was detected in one of the branches. The N-glycosidic glycans have the following overall structure: (Formula: see text). The majority of the O-glycosidic carbohydrate chains bound to the protein core were found to be of the mucin type. They were obtained as glycopeptides and oligosaccharide alditols, and possessed the following structures: NeuAc alpha(2----3)Gal beta(1----3)GalNAc-ol, [NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----6)]GalNAc-ol, and NeuAc alpha-(2----3) Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)] GalNAc-ol. The remainder of the O-glycosidic carbohydrate chains bound to the isolated proteoglycan were the hexasaccharide link regions of the chondroitin sulfate chains that remained after chondroitinase ABC treatment of the native molecule. These latter glycans, which were obtained as oligosaccharide alditols, had the following structure (with GalNAc free of sulfate or containing sulfate bound at either C-4 or C-6): delta 4,5GlcUA beta(1----3)GalNAc beta(1----4)GlcUA beta(1----3)Gal beta(1----3)Gal beta(1----4)Xyl-ol.  相似文献   

3.
The carbohydrate chains linked to human kappa-casein from mature milk were released by alkaline borohydride treatment as reduced oligosaccharides. The neutral oligosaccharides of lower molecular weight were fractionated and purified by gel filtration and preparative thin layer chromatographies. Seven neutral oligosaccharides (a di- (0.5%), two tetra- (30.5%), two penta- (5.4%) and two hexasaccharide alditols (10.9%] were obtained in homogeneity, and followed by methylation analysis with gas-liquid chromatography-mass spectrometry and by anomer analysis with 13C nuclear magnetic resonance. Their chemical structures were identified to be Gal beta 1----3GalNAc-ol (I), Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (II), Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (III), GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (IV), GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (V), Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (VI) and Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (VII). Five oligosaccharide alditols (III-VII) were the novel carbohydrate chains of kappa-casein from mammalian milk.  相似文献   

4.
It was previously shown that alkaline borohydride treatment of human midcycle cervical mucin releases a heterogeneous population of reduced neutral, sialylated, and sulfated oligosaccharides (Yurewicz, E. C., and Moghissi, K. S. (1981) J. Biol. Chem. 256, 11895-11905). Three major neutral oligosaccharides were isolated with approximate compositions of Fuc:Gal:GlcNAc:N-acetylgalactosaminitol (GalNAcol) = 0:2:1:1 (A1), 1:2:1:1 (A2), and 2:2:1:1 (A3). They comprised roughly 21%, 13%, and 8% of human cervical mucin oligosaccharide chains, respectively. In the present report, each was analyzed by periodate oxidation, methylation, and sequential degradation with glycosidases. A1 was shown to contain more than one component, but structural analyses clearly demonstrated the presence of one predominant (75%) tetrasaccharide. The proposed structure, Gal beta 1-4GlcNAc beta 1-6(Gal beta 1-3)GalNAcol, has previously been found in human gastric, submaxillary, and ovarian cyst mucins in their carbohydrate-to-protein linkage regions. beta-Galactosidase from Aspergillus niger selectively cleaved the Gal beta 1-4GlcNAc linkage in the intact tetrasaccharide. Enzymatic hydrolysis of the Gal beta 1-3GalNAcol linkage required prior removal of the Gal beta 1-4GlcNAc beta 1-unit attached to 0-6 of GalNAcol. The data for A2 indicated a mixture of two oligosaccharides, Gal beta 1-4,3(Fuc alpha 1-3,4)GlcNAc beta 1-6(Gal beta 1-3)GalNacol and Fuc alpha 1-2Gal beta 1-4GlcNac beta 1-6(Gal beta 1-3)-GalNacol, in an approximate molar ratio of 3 to 4:1, respectively. Two structures are consistent with the data obtained for A3: Fuc alpha 1-2Gal beta 1-4,3(Fuc alpha 1-3,4)GlcNAc beta 1-6(Gal beta 1-3)GalNAcol and/or Gal beta 1-4,3(Fuc alpha 1-3,4)GlcNac beta 1-6(Fuc alpha 1-2Gal beta 1-3)GalNacol. The results indicate that A1 represents the "core" tetrasaccharide of the larger human cervical mucin oligosaccharides A2 and A3.  相似文献   

5.
This report describes the structure of novel complex-type Asn-linked oligosaccharides in glycoproteins synthesized by the human blood fluke, Schistosoma mansoni. Adult schistosome worm pairs (male and female) isolated from infected hamsters were metabolically radiolabelled with either [3H]glucosamine, [3H]mannose or [3H]galactose. The glycopeptides prepared by pronase digestion of the total glycoprotein fraction were isolated by affinity chromatography on columns of immobilized Concanavalin A (Con A) and Wisteria floribunda agglutinin (WFA). A subset of glycopeptides, designated IIb, that bound to both Con A and WFA was isolated. WFA has been shown to have affinity for oligosaccharides containing beta 1,4-linked N-acetylgalactosamine (GalNAc) at their non-reducing termini. Compositional analysis of IIb glycopeptides demonstrated that they contained N-acetylglucosamine (GlcNAc), GalNAc, mannose (Man) and fucose (Fuc), but no galactose (Gal) or N-acetylneuraminic acid (NeuAc). Methylation analyses and exoglycosidase digestions indicated that IIb glycopeptides were complex-type biantennary structures with branches containing the sequence GalNAc beta 1-4-[+/- Fuc alpha 1-3]GlcNAc beta 1-2Man alpha 1-R. The discovery of these unusual oligosaccharides synthesized by a human parasite, which appear to be similar to some newly discovered mammalian cell-derived oligosaccharides, may shed light on future studies related to the role oligosaccharides may play in host-parasite interactions.  相似文献   

6.
The oligosaccharides present in the milk of an African elephant (Loxodonta africana africana), collected 4 days post partum, were separated by size exclusion-, anion exchange- and high-performance liquid chromatography (HPLC) before characterisation by (1)H NMR spectroscopy. Neutral and acidic oligosaccharides were identified. Neutral oligosaccharides characterised were isoglobotriose, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and a novel oligosaccharide that has not been reported in the milk or colostrum of any other mammal: Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. Acidic oligosaccharides that are also found in the milk of Asian elephant were Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc, while Neu5Gc(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc have not been found in Asian elephant milk. The oligosaccharides characterised contained both alpha(2-3)- and alpha(2-6)-linked Neu5Ac residues. They also contain only the type II chain, as found in most non-human, eutherian mammals.  相似文献   

7.
Lewis a and Lewis x oligosaccharides Gal beta 3(Fuc alpha 4)GlcNAc beta 3Gal beta 4Glc and Gal beta 4(Fuc alpha 3)GlcNAc beta 3Gal beta 4Glc are easily isolated as a mixture from biological fluids, including human milk. However, because they behave almost identically in most chromatographic systems, it is difficult to have each of them as a pure compound. Incidentally, we found that they were easily separated by HPLC as glycosynthons [Gal beta 3(Fuc alpha 4)GlcNAc beta 3Gal beta 4Glc-Glp-beta Ala-OBzl and Gal beta 4(Fuc alpha 3)GlcNAc beta 3Gal beta 4Glc-Glp-beta Ala-OBzl] after substitution of the terminal reducing sugar by a short peptide (pyroglutamyl-beta alanyl-O-benzyl ester) in a one-pot two-step reaction (Carbohydr. Lett. 1 (1995) 269; Bioconjug. Chem. 9 (1998) 268). Such glycosynthons are easily either converted back to native Lewis a and Lewis x oligosaccharides upon hydrazinolysis or used to synthesize glycoconjugates, such as glycoclusters, glycopeptides, glycooligonucleotides, glycosylated polymers or glycosylated matrices for therapeutic or analytical purposes.  相似文献   

8.
The most acidic carbohydrate chains released by alkaline borohydride treatment of the bulk of airway mucins secreted by a patient (blood group O, secretor) suffering from a mildly infected chronic bronchitis have been fractionated using high-performance anion-exchange chromatography (HPAEC) according to a protocol already described [Lo-Guidice et al., J. Biol. Chem. 269 (1994) 18794] and were analyzed using 1H-NMR spectroscopy and matrix-assisted laser-adsorption-time-of-flight (MALDI-TOF) spectrometry. Many fractions corresponded to mixtures of oligosaccharides. This confirmed the wide diversity of the post-translational processes involved in the biosynthesis of airway mucins, which had already been observed in bronchial diseases, such as chronic bronchitis and cystic fibrosis (CF). Seven fractions were directly purified by HPAEC, allowing their structural determination. Six of them corresponded to 3-O-sulfated oligosaccharide chains terminated by a sulfated N-acetyllactosamine, a sulfated Lewis X or a sulfated Lewis A determinant, and the last one corresponded to a 6-O-sulfated chain terminated by a sulfated H-2 determinant. Three oligosaccharides had core type 2 and the other four had core type 4: IIIc2-9: Gal(beta1-3)[HSO(3)-3-Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol, IIIc2-10: Gal(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)[HSO(3)-6-]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-4: Fuc(alpha1-2)Gal(beta1-3)[HSO(3)-3-Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-8: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3)-3-Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol, IIIc2-7: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[Gal(beta1-4)[HSO(3)-6-]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-3: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3)-3-Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)]GalNAc-ol, IIIc1-4: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3) -3-Gal(beta1-3)[Fuc(alpha1-4)]GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol. Like previous data concerning the airway mucins from another patient (blood group O and non-secretor) suffering from chronic bronchitis [Lo-Guidice et al., Glycoconj. J. 14 (1997) 113], no disialylated oligosaccharide and no sialylated and sulfated oligosaccharide bearing sialyl Lewis X epitope could be isolated. This is in contrast with the data obtained with the airway mucins secreted by the patient severely infected by Pseudomonas aeruginosa and suffering from CF, suggesting that important differences occur in the biosynthesis of airway mucins secreted by patients suffering from different bronchial diseases with or without severe infection.  相似文献   

9.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(alpha1-3)Gal(beta1-4)Glc (alpha3'-galactosyllactose), Fuc(alpha1-2)Gal(beta1-4)Glc (2'-fucosyllactose), Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (B-tetrasaccharide), GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)Glc (A-tetrasaccharide), Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)GlcNAc(beta1-3)[Gal(alpha1-3)Gal(beta1-4)Glc NAc(beta1-6)]Gal(beta1-4)Glc; the saccharides from another animal: alpha3'-galactosyllactose, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, A-tetrasaccharide, GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal(beta1-4)[Fuc(alpha1-3)]Glc (A-pentasaccharide), Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Gl c, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[F uc(alpha1-3)]Glc (difucosylheptasaccharide) and Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)?Gal(alpha1-3) Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)?Gal(beta1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had alpha-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

10.
The structure of a nonasaccharide and of two decasaccharides isolated from human milk has been investigated by using methylation, fast atom bombardment mass spectrometry and 1H-/13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides were: trifucosyllacto-N-hexaose; Fuc alpha 1-2Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3[Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6]Gal beta 1-4Glc, difucosyllacto-N-octaoses; Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6[Gal beta 1-3GlcNAc beta 1-3]Gal beta 1-4Glc and Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6[Fuc alpha 1-3 Gal beta 1-3GlcNAc beta 1-3]Gal beta 1-4Glc. The two decasaccharides possess a new type of core structure proposed to be named iso-lacto-N-octaose.  相似文献   

11.
Torii T  Fukuta M  Habuchi O 《Glycobiology》2000,10(2):203-211
We have previously cloned keratan sulfate Gal-6-sulfotransferase (KSGal6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of Gal residue of keratan sulfate. In this study, we examined whether KSGal6ST could transfer sulfate to sialyl N -acetyllactosamine oligosaccharides or fetuin oligo-saccharides. KSGal6ST expressed in COS-7 cells catalyzed transfer of sulfate to NeuAcalpha2-3Galbeta1-4GlcNAc (3'SLN), NeuAcalpha2-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Gl cNAc (SL1L1), NeuAcalpha2-3Galbeta1-4(6-sulfo)GlcNAcbeta1-3(6-sulfo) Galbeta1-4(6-su lfo)GlcNAc (SL2L4), and their desialylated derivatives except for Galbeta1-4GlcNAc, but not to NeuAcalpha2-3Galbeta1-4(Fucalpha1-3)GlcNAc (SLex). When the sulfated product formed from 3'SLN was degraded with neuraminidase and reduced with NaBH(4), the resulting sulfated disaccharide alditol showed the same retention time in SAX-HPLC as that of [(3)H]Gal(6SO(4))beta1-4GlcNAc-ol. KSGal6ST also catalyzed sulfation of fetuin. When the sulfated oligosaccharides released from the sulfated fetuin after sequential digestion with proteinase and neuraminidase were subjected to a reaction sequence of hydrazin-olysis, deaminative cleavage and NaBH(4)reduction, the major product was co-eluted with [(3)H]Gal(6SO(4))beta1-4anhydromannitol in SAX-HPLC. These observations show that KSGal6ST is able to sulfate position 6 of Gal residue of 3'SLN and fetuin oligosaccharides. The relative rates of the sulfation of SL2L4 was much higher than the rate of the sulfation of keratan sulfate. These results suggest that KSGal6ST may function in the sulfation of sialyl N -acetyllactosamine oligosaccharide chains attached to glycoproteins.  相似文献   

12.
We have previously described the structures of neutral and sialylated O-glycosidic mannose-linked tetrasaccharides and keratan sulphate polysaccharide chains in the chondroitin sulphate proteoglycan of brain. The present paper provides information on a series of related sialylated and/or sulphated tri- to penta-saccharides released by alkaline-borohydride treatment of the proteoglycan glycopeptides. The oligosaccharides were fractionated by ion-exchange chromatography and gel filtration, and their structural properties were studied by methylation analysis and fast-atom-bombardment mass spectrometry. Five fractions containing [35S]sulphate-labelled oligosaccharides were obtained by ion-exchange chromatography, each of which was eluted from Sephadex G-50 as two well-separated peaks. The apparent Mr values of both the large- and small-molecular-size fractions increased with increasing acidity (and sulphate labelling) of the oligosaccharides. The larger-molecular-size fractions contained short mannose-linked keratan sulphate chains of Mr 3000-4500, together with some asparagine-linked oligosaccharides. The smaller tri- to penta-saccharides, of Mr 800-1400, appear to have a common GlcNac(beta 1-3)Manol core, and to contain one to two residues of sialic acid and/or sulphate.  相似文献   

13.
Two trisaccharides, two tetrasaccharides, one penta-, one hexa-, two hepta-, one deca- and two undeca-saccharides were isolated from several Japanese black bear milk samples by chloroform/methanol extraction, gel filtration and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: Gal(alpha 1-3)Gal(beta 1-4)Glc (alpha 3'-galactosyllactose), Fuc(alpha 1-2)Gal(beta 1-4)Glc (2'-fucosyllactose), Gal(alpha 1-3)(Fuc(alpha 1-2))Gal(beta 1-4)Glc (B-tetrasaccharide), Gal(alpha 1-3)Gal(beta 1-4)(Fuc(alpha 1-3))Glc, Gal(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)[Fuc(alpha 1-3)]Glc (B-pentasaccharide), Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4)Glc (monofucosylhexasaccharide), Gal(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4)Glc (difucosylheptasaccharide), Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]Glc (difucosylheptasaccharide), Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)[Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-6)]Gal(beta 1-4)Glc (difucosyldecasaccharide), Gal(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)[Gal(alpha 1-3) Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-6)]Gal(beta 1-4)Glc (trifucosylundecasaccharide), Gal(alpha 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)[Gal(alpha 1-3)[Fuc(alpha 1-2)]Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-6)]Gal(beta 1-4)Glc (trifucosylundecasaccharide). Lactose was present only in trace amounts. B-pentasaccharide was a dominant saccharide in early lactation milk, while alpha 3'-galactosyllactose was dominant in milk, later. The milk oligosaccharides of the Japanese black bear were compared with those of the Ezo brown bear.  相似文献   

14.
A novel type of N-linked glycopeptides representing a major part of the glycans in human small intestinal epithelial cells from blood group A and O individuals were isolated by gel filtrations and affinity chromatography on concanavalin A-Sepharose and Bandeiraea simplicifolia lectin I-Sepharose. Sugar composition, methylation analysis, 1H NMR spectroscopy of the underivatized glycopeptides and FAB-mass spectrometry and electron impact-mass spectrometry of the permethylated glycopeptides indicated a tri- and tetra-antennary structure containing an intersecting N-acetylglucosamine and an alpha (1----6)-linked fucose residue in the core unit for the majority of the glycans. In contrast to most glycopeptides of other sources, the intestinal glycopeptides were devoid of sialic acid, but contained 6-7 residues of fucose. The outer branches contained the following structures: Fuc alpha 1-2Gal beta 1-3GleNAc beta 1- (H type 1) Fuc alpha 1-2Gal beta 1-4GleNAc beta 1- (H type 2) Gal beta 1-4 (Fuc alpha 1-3)GlcNAc beta 1- (X) Fuc alpha 1-2Gal beta 1-4(Fuc alpha 1-3)GleNAc beta 1- (Y) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-3GleNAc beta 1- (A type 1) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-4GleNAc beta 1- (monofucosyl A type 2) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-4 (Fuc alpha 1-3)GlcNAc beta 1- (trifucosyl A type 2) The blood group determinant structures were mainly of type 2, whereas glycolipids from the same cells contained mainly type 1 determinants. The polyfucosylated glycans represent a novel type of blood group active glycopeptides. The unique properties of the small intestinal glycopeptides as compared with glycopeptides of other tissue sources may be correlated with the specialized functional properties of the small intestinal epithelial cells.  相似文献   

15.
Nonspecific cross-reacting antigen-2 (NCA-2) is a glycoprotein purified from meconium as a closely correlated entity with carcinoembryonic antigen (CEA). As in the case of CEA, only asparagine-linked sugar chains are included in NCA-2. In order to elucidate the structural characteristics of the sugar chains of NCA-2, they were quantitatively released from the polypeptide backbone by hydrazinolysis and reduced with NaB3H4 after N-acetylation. The radioactive oligosaccharides were fractionated by paper electrophoresis, serial chromatography on immobilized lectin columns, and Bio-Gel P-4 (under 400 mesh) column chromatography. Structures of the oligosaccharides were estimated from the data of the binding specificities of immobilized lectin columns and the effective size of each oligosaccharide determined by passing through a Bio-Gel P-4 column and were then confirmed by endo-beta-galactosidase digestion, sequential digestion with exoglycosidases with different aglycon specificities, and methylation analysis. NCA-2 contains a similar number (27 mol) of sugar chains in one molecule compared with CEA (24-26 mol). However, all sugar chains of NCA-2 were complex-type in contrast to CEA, approximately 8% of the sugar chains of which were high mannose-type (Yamashita, K., Totani, K., Kuroki, M., Matsuoka, Y., Ueda, I., and Kobata, A. (1987) Cancer Res. 47, 3451-3459). About 80% of the oligosaccharides from NCA-2 contain bisecting N-acetylglucosamine residues, and the percent molar ratio of mono-, bi, tri, and tetraantennary oligosaccharides was 2:14:57:27. (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, and GalNAc beta 1----3Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4GlcNAc were found as their outer chain moieties. Approximately 60% of the oligosaccharides from NCA-2 contain the Gal beta 1----4 or 3GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1----group in their outer chains.  相似文献   

16.
Carbohydrates were extracted from hooded seal milk, Crystophora cristata (family Phocidae). Free oligosaccharides were separated by gel filtration and then purified by ion exchange chromatography, gel filtration and preparative thin layer or paper chromatography and their structures determined by 1H-NMR. The hooded seal milk was found to contain inositol and at least nine oligosaccharides, most of which had lacto-N-neotetraose or lacto-N-neohexaose as core units, similar to those in milk of other species of Carnivora such as bears (Ursidae). Their structures were as follows: Gal(beta1-4)Glc (lactose); Fuc(alpha1-2)Gal(beta1-4)Glc (2'-fucosyllactose); Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (lacto-N-fucopentaose IV); Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(1-4)Glc (lacto-N-neohexaose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (monofucosyl lacto-N-neohexaose a); Gal(beta1-4)GlcNAc(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (monofucosyl lacto-N-neohexaose b); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc (difucosyl lacto-N-neohexaose); Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (para lacto-N-neohexaose); Fuc(alpha1-2)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc (monofucosyl para lacto-N-neohexaose). Milk of the Australian fur seal, Arctophalus pusillus doriferus (family Otariidae) contained inositol but no lactose or free oligosaccharides. These results, therefore, support the hypothesis that the milk of otariids, unlike that of phocids, contains no free reducing saccharides.  相似文献   

17.
Milk of an Asian elephant (Elephas maximus), collected at 11 days post partum, contained 91 g/L of hexose and 3 g/L of sialic acid. The dominant saccharide in this milk sample was lactose, but it also contained isoglobotriose (Glc(alpha1-3)Gal(beta1-4)Glc) as well as a variety of sialyl oligosaccharides. The sialyl oligosaccharides were separated from neutral saccharides by anion exchange chromatography on DEAE-Sephadex A-50 and successive gel chromatography on Bio Gel P-2. They were purified by high performance liquid chromatography (HPLC) using an Amide-80 column and characterized by 1H-NMR spectroscopy. Their structures were determined to be those of 3'-sialyllactose, 6'-sialyllactose, monofucosyl monosialyl lactose (Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc), sialyl lacto-N-neotetraose c (LST c), galactosyl monosialyl lacto-N-neohexaose, galactosyl monofucosyl monosialyl lacto-N-neohexaose and three novel oligosaccharides as follows: Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, and Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. The higher oligosaccharides contained only the type II chain (Gal(beta1-4)GlcNAc); this finding differed from previously published data on Asian elephant milk oligosaccharides.  相似文献   

18.
Carbohydrate recognition by bovine serum conglutinin has been investigated by inhibition and direct binding assays using glycoproteins and polysaccharides from Saccharomyces cerevisiae (baker's yeast), and neoglycolipids derived from N-acetylglucosamine oligomers, mannobiose and human milk oligosaccharides. The results clearly show that conglutinin is a lectin which binds terminal N-acetylglucosamine, mannose and fucose residues as found in chitobiose (GlcNAc beta 1-4GlcNAc), mannobiose (Man alpha 1-3Man) and lacto-N-fucopentaose II [Fuc alpha 1-4(Gal beta 1-3)GlcNAc beta 1-3Gal beta 1-4Glc] respectively.  相似文献   

19.
The fully assigned 1H and 13C-NMR spectra of four group A oligosaccharides by use of multiple-relayed, coherence-transfer chemical-shift-correlated spectroscopy (multiple-RELAY-COSY) and 1H-/13C-correlation spectroscopy are reported. These analyses were performed on the following compounds: III-A; GalNAc alpha 1-3[Fuc alpha 1-2]Gal: VI-A; GalNAc alpha 1-3[Fuc alpha 1-2]Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal: VII-A-1; GalNAc alpha 1-3[Fuc alpha 1-2]Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal beta 1-1Glycerol: VII-A-2; GalNAc alpha 1-3[Fuc alpha 1-2]Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal beta 1-4Glc.  相似文献   

20.
Structures of O-linked oligosaccharides of leukosialin isolated from K562 erythroid, HL-60 promyelocytic, and HSB-2 T-lymphoid cell lines were examined. Leukosialin was isolated by specific immunoprecipitation from cells which were metabolically labeled with [3H]glucosamine, and glycopeptides were isolated after Pronase digestion. O-Linked oligosaccharides were released by alkaline borohydride treatment, and the structures of purified oligosaccharides were elucidated by specific exoglycosidase digestion, Smith degradation, and methylation anaylsis. Oligosaccharides from K562 cells were found to be GalNAcOH, Gal beta 1----3GalNAcOH, NeuNAc alpha 2----6GalNAcOH, NeuNAc alpha 2----3Gal beta 1----3GalNAcOH, Gal beta 1----3(NeuNAc alpha 2----6)GalNAcOH, and NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----6)GalNAcOH. On the other hand, oligosaccharides from HL-60 and HSB-2 cells were found to be NeuNAc alpha 2----3Gal beta 1----3GalNAcOH, NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6(Gal beta 1----3)GalNAcOH, Gal beta 1----4GlcNAc beta 1----6(NeuNAc alpha 2----3)Gal beta 1----3)GalNAcOH, and NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6(NeuNAc alpha 2----3Gal beta 1----3)GalNAcOH. These results clearly indicate that leukosialin can be differently glycosylated with O-linked chains, and each erythroid or myeloid (and T-lymphoid) cell line expresses a characteristic set of O-linked oligosaccharides which differ in core structures as well as in sialylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号