首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation of the induced neurodegeneration, we have developed standardized protocols, including--a) densitometric measurements of the cellular uptake of propidium iodide (PI), --b) histological staining by Flouro-Jade, --c) lactate dehydrogenase (LDH) release to the culture medium, --d) immunostaining for microtubulin-associated protein 2, and --e) general and specific neuronal and glial cell stains. The results show good correlation between the different markers, and are in accordance with results obtained in vivo. Examples presented in this review will focus on the use of PI uptake to monitor the excitotoxic effects of --a) KA and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use for studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection.  相似文献   

2.
Xapelli S  Silva AP  Ferreira R  Malva JO 《Peptides》2007,28(2):288-294
In the present work we investigated the neuroprotective role of neuropeptide Y (NPY) after an excitotoxic insult in rat organotypic hippocampal slice cultures. Exposure of 2 week-old rat hippocampal slice cultures to 12muM kainate (KA) for 24h induced neuronal death in dentate gyrus (DG) granular cell layer, CA1 and CA3 pyramidal cell layers, as quantified by cellular propidium iodide (PI) uptake. The activation of Y(1) or Y(2) receptors 30min after starting the exposure to the excitotoxic insult with kainate resulted in neuroprotection by reducing the PI uptake in DG, CA1 and CA3 cell layers. The use of Y(1) or Y(2) receptors antagonists, BIBP3226 (1muM) or BIIE0246 (1muM), resulted in the loss of the neuroprotection induced by the activation of Y(1) or Y(2) receptors, respectively, in all hippocampal subfields. Taken together these results suggest that activation of NPY Y(1) or Y(2) receptors activates neuroprotective pathways that are able to rescue neurons from excitotoxic cell death.  相似文献   

3.
ATP stimulation of cell surface P2X7 receptors results in cytolysis and cell death of macrophages. Activation of this receptor in bacterial lipopolysaccharide (LPS)-activated macrophages or monocytes also stimulates processing and release of the cytokine interleukin-1beta(IL-1beta) through activation of caspase-1. The cytokine interleukin 18 (IL-18) is also cleaved by caspase-1 and shares pro-inflammatory characteristics with IL-1beta. The objective of the present study was to test the hypothesis that IL-1beta, IL-18, and/or caspase-1 activation contribute directly to macrophage cell death induced by LPS and ATP. Macrophages were cultured from normal mice or those in which genes for the P2X7 receptor, IL-1beta, IL-1alpha, IL-18, or caspase-1 had been deleted. Our data confirm the importance of the P2X7 receptor in ATP-stimulated cell death and IL-1beta release from LPS-primed macrophages. We demonstrate that prolonged stimulation with ATP leads to cell death, which is partly dependent on LPS priming and caspase-1, but independent of cytokine processing and release. We also provide evidence that LPS priming of macrophages makes them highly susceptible to the toxic effects of brief exposure to ATP, which leads to rapid cell death by a mechanism that is dependent on caspase-1 but, again, independent of cytokine processing and release.  相似文献   

4.
Cyclooxygenases (COX) are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2) synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA) induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2) synthesis (10 minutes after NMDA), while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA). Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2) synthesis is dependent on P2X7 receptors, extracellular Ca(2+) and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2) synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2) receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2) receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2) production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain injury.  相似文献   

5.
Transient global ischemia (which closely resembles clinical situations such as cardiac arrest, near drowning or severe systemic hypotension during surgical procedures), often induces delayed neuronal death in the brain, especially in the hippocampal CA1 region. The mechanism of ischemia/reperfusion (I/R) injury is not fully understood. In this study, we have shown that the P2X7 receptor antagonist, BBG, reduced delayed neuronal death in the hippocampal CA1 region after I/R injury; P2X7 receptor expression levels increased before delayed neuronal death after I/R injury; inhibition of the P2X7 receptor reduced I/R-induced microglial microvesicle-like components, IL-1β expression, P38 phosphorylation, and glial activation in hippocampal CA1 region after I/R injury. These results indicate that antagonism of the P2X7 receptor and signaling pathways of microglial MV shedding, such as src-protein tyrosine kinase, P38 MAP kinase and A-SMase, might be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.  相似文献   

6.
Human Bcl-2 protects against AMPA receptor-mediated apoptosis   总被引:6,自引:0,他引:6  
Dysfunctions of the (S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of ionotropic receptor for the brain's major excitatory neurotransmitter, L-glutamate, occur in various neurological conditions. We have previously demonstrated that AMPA receptor-mediated excitotoxicity occurs by apoptosis and here examined the influence of the expression of cell death repressor gene Bcl-2 on this excitotoxic insult. Using neuronal cortical cultures prepared from transgenic mice expressing the human Bcl-2 gene, the influence of Bcl-2 on AMPA receptor-mediated neuronal death was compared with that seen with staurosporine and H2O2. At day 6 cultures were exposed to AMPA (0.1-100 microM), and cellular injury was analyzed 48 h after insult using phase-contrast microscopy, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay, and DNA staining with 4,6-diamidino-2-phenylindole and Sytox Green. AMPA produced a concentration-dependent increase in cell death that was significantly attenuated by human Bcl-2. AMPA (3 microM) increased the number of apoptotic nuclei to 60% of control in wild-type cultures, and human Bcl-2 significantly decreased the number of apoptotic nuclei to 30% of AMPA-treated cultures. Human Bcl-2 only provided significant neuroprotection against neuronal injury induced by low concentrations of staurosporine (1-10 nM) and H2O2 (0.1-30 microM) and where neuronal death was by apoptosis, but not against H2O2-induced necrosis. Our findings indicate that overexpression of Bcl-2 in primary cultured neurons protects in an insult-dependent manner against AMPA receptor-mediated apoptosis, whereas protection was not seen against more traumatic insults. This study provides new insights into the molecular therapeutics of neurodegenerative conditions.  相似文献   

7.
IL-1beta released from activated macrophages contributes significantly to tissue damage in inflammatory, degenerative, and autoimmune diseases. In the present study, we identified a novel mechanism of IL-1beta release from activated microglia (brain macrophages) that occurred independently of P2X(7) ATP receptor activation. Stimulation of LPS-preactivated microglia with lysophosphatidylcholine (LPC) caused rapid processing and secretion of mature 17-kDa IL-1beta. Neither LPC-induced IL-1beta release nor LPC-stimulated intracellular Ca(2+) increases were affected by inhibition of P2X(7) ATP receptors with oxidized ATP. Microglial LPC-induced IL-1beta release was suppressed in Ca(2+)-free medium or during inhibition of nonselective cation channels with Gd(3+) or La(3+). It was also attenuated when Ca(2+)-activated K(+) channels were blocked with charybdotoxin (CTX). The electroneutral K(+) ionophore nigericin did not reverse the suppressive effects of CTX on LPC-stimulated IL-1beta release, demonstrating the importance of membrane hyperpolarization. Furthermore, LPC-stimulated caspase activity was unaffected by Ca(2+)-free medium or CTX, suggesting that secretion but not processing of IL-1beta is Ca(2+)- and voltage-dependent. In summary, these data indicate that the activity of nonselective cation channels and Ca(2+)-activated K(+) channels is required for optimal IL-1beta release from LPC-stimulated microglia.  相似文献   

8.
We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the alpha-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75(NTR) expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.  相似文献   

9.
Priming of monocytes with LPS produces large quantities of intracellular, biologically inactive IL-1beta that can be processed and released by subsequent activation of the P2X7 receptor by extracellular ATP. We examined whether a loss-of-function polymorphism of the human P2X7 receptor (Glu496Ala) impairs this process. Both ATP-induced ethidium+ uptake and ATP-induced shedding of L-selectin (CD62L) were nearly absent in monocytes from four subjects homozygous for Glu496Ala confirming that this polymorphism impairs P2X7 function. The level of ATP-induced IL-1beta released in 2 h from LPS-activated whole blood from homozygous subjects was 50% of that from wild-type samples. A more marked defect in IL-1beta release was observed from LPS-activated monocytes of homozygous subjects which was only 22% of that released from wild-type monocytes after a 30-min incubation with ATP. However, after a 60-min incubation with ATP, the amount of IL-1beta released from homozygous monocytes was 70% of that released from wild-type monocytes. Incubation of monocytes of either genotype with nigericin resulted in a similar release of IL-1beta. Western blotting demonstrated that ATP induced the release of mature 17-kDa IL-1beta from monocytes, and confirmed that this process was impaired in homozygous monocytes. Finally, ATP-induced 86Rb+ efflux was 9-fold lower from homozygous monocytes than from wild-type monocytes. The results indicate that ATP-induced release of IL-1beta is slower in monocytes from subjects homozygous for the Glu496Ala polymorphism in the P2X7 receptor and that this reduced rate of IL-1beta release is associated with a lower ATP-induced K+ efflux.  相似文献   

10.
Recent studies indicate that Toll-like receptors (TLRs), originally identified as infectious agent receptors, also mediate sterile inflammatory responses during tissue damage. In this study, we investigated the role of TLR2 in excitotoxic hippocampal cell death using TLR2 knock-out (KO) mice. TLR2 expression was up-regulated in microglia in the ipsilateral hippocampus of kainic acid (KA)-injected mice. KA-mediated hippocampal cell death was significantly reduced in TLR2 KO mice compared with wild-type (WT) mice. Similarly, KA-induced glial activation and proinflammatory gene expression in the hippocampus were compromised in TLR2 KO mice. In addition, neurons in organotypic hippocampal slice cultures (OHSCs) from TLR2 KO mouse brains were less susceptible to KA excitotoxicity than WT OHSCs. This protection is partly attributed to decreased expression of proinflammatory genes, such as TNF-α and IL-1β in TLR2 KO mice OHSCs. These data demonstrate conclusively that TLR2 signaling in microglia contributes to KA-mediated innate immune responses and hippocampal excitotoxicity.  相似文献   

11.
The survival and death rates of inflammatory cells directly control their number and are substantially associated with the degree of inflammation. Microglia, key players in neuroinflammation, often cause excessive reactions implicated in neurological diseases. However, the mechanisms that determine microglial fate under pathological conditions remain to be elucidated. Here, we report that activation by lipopolysaccharide (LPS, a Toll-like receptor 4 ligand), an inflammation inducer, primarily promotes survival of microglia, but as its concentration is increased it induces cell death, resulting in decreased cell number. Moreover, extracellular ATP, which is released upon tissue damage, further enhanced the survival induced by a low LPS concentration and the death induced by a high LPS concentration. The survival-promoting effect of ATP was mimicked by non-hydrolyzable ATP analog, adenosine 5'-O-(3-thiotriphosphate), and also by the P2X(7) receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, and was suppressed by the P2X(7) antagonists, Brilliant Blue G and A 438079. On the contrary, the death of LPS-activated microglia was not affected by adenosine 5'-O-(3-thiotriphosphate), but enhanced by adenosine, ATP breakdown product. Thus, extracellular ATP modulates microglial survival and death in different ways involving P2X(7) receptor activation and ATP degradation to adenosine, respectively. Such Toll-like receptor 4/purinergic signaling may provide a fine regulatory system of neuroinflammation through modulating the microglial cell number.  相似文献   

12.
Glutamate receptor overactivation induces excitotoxic neuronal death, but the contribution of glutamate receptor subtypes to this excitotoxicity is unclear. We have previously shown that excitotoxicity by NMDA receptor overactivation is associated with choline release and inhibition of phosphatidylcholine synthesis. We have now investigated whether the ability of non-NMDA ionotropic glutamate receptor subtypes to induce excitotoxicity is related to the ability to inhibit phosphatidylcholine synthesis. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced a concentration-dependent increase in extracellular choline and inhibited phosphatidylcholine synthesis when receptor desensitization was prevented. Kainate released choline and inhibited phosphatidylcholine synthesis by an action at AMPA receptors, because these effects of kainate were blocked by the AMPA receptor antagonist LY300164. Selective activation of kainate receptors failed to release choline, even when kainate receptor desensitization was prevented. The inhibition of phosphatidylcholine synthesis evoked by activation of non-desensitizing AMPA receptors was followed by neuronal death. In contrast, specific kainate receptor activation, which did not inhibit phosphatidylcholine synthesis, did not produce neuronal death. Choline release and inhibition of phosphatidylcholine synthesis were induced by AMPA at non-desensitizing AMPA receptors well before excitotoxicity. Furthermore, choline release by AMPA required the entry of Ca(2+) through the receptor channel. Our results show that AMPA, but not kainate, receptor overactivation induces excitotoxic cell death, and that this effect is directly related to the ability to inhibit phosphatidylcholine synthesis. Moreover, these results indicate that inhibition of phosphatidylcholine synthesis is an early event of the excitotoxic process, downstream of glutamate receptor-mediated Ca(2+) overload.  相似文献   

13.
Parenterally administered lipopolysaccharide (LPS) increases the concentration of the pro-inflammatory cytokine interleukin-1beta (IL-1beta) in the rat hippocampus and evidence suggests that this effect plays a significant role in inhibiting long-term potentiation (LTP). The anti-inflammatory cytokine IL-10, antagonizes certain effects of IL-1beta, so if the effects of LPS are mediated through an increase in IL-1beta, it might be predicted that IL-10 would also abrogate the effect of LPS. Here, we report that IL-10 reversed the inhibitory effect of LPS on LTP and the data couple this with an inhibitory effect on the LPS-induced increase in IL-1beta. LPS treatment increased hippocampal expression of IL-1 receptor Type I protein. Consistent with the LPS-induced increases in IL-1beta concentration and receptor expression, were downstream changes which included enhanced phosphorylation of IRAK and the stress-activated kinases, JNK and p38; these LPS-induced changes were reversed by IL-10, which concurs with the idea that these events are triggered by increased activation of IL-1RI by IL-1beta. We provide evidence which indicates that LPS treatment leads to evidence of cell death and this was reversed in hippocampus prepared from LPS-treated rats which received IL-10. The evidence is therefore consistent with the idea that IL-10 acts to protect neuronal tissue from the detrimental effects induced by LPS.  相似文献   

14.
Macrophage colony stimulating factor (M-CSF) and its receptor are up-regulated in the brain in Alzheimer's disease (AD), in transgenic mouse models for AD, and experimental models for traumatic and ischemic brain injury. M-CSF induces activation and proliferation of microglial cells and expression of proinflammatory cytokines. We examined the role of M-CSF in excitotoxic neuronal cell death in organotypic hippocampal cultures. NMDA treatment induced neuronal apoptosis and caspase-3 activation in organotypic hippocampal cultures, whereas treatment with M-CSF protected hippocampal neurons from NMDA-induced apoptosis. Caspase-3 activation was inhibited by M-CSF treatment to the same degree as with the caspase inhibitor Z-VAD-FMK. These results suggest that M-CSF has neuroprotective properties through inhibition of caspase-3 that could promote neuronal survival after excitotoxic insult. The role of M-CSF in neurological disease should be reevaluated as a microglial activator with potentially neuroprotective effects.  相似文献   

15.
Abstract: The effects of glutamatergic excitotoxins on intracellular Cl? were investigated in the CA1 pyramidal cell layer of the hippocampal slice. Hippocampal slices from rats (14–19 days old) were loaded with 6-methoxy-N-ethylquinolinium chloride (MEQ), a Cl?-sensitive fluorescent probe with a fluorescence intensity that correlates inversely with intracellular [Cl?]. Slices were exposed for at least 10 min at 26–28°C to N-methyl-d -aspartate (NMDA; 100 µM) or α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA; 50 µM). A UV laser scanning confocal microscope was used to measure changes in MEQ fluorescence within area CA1 pyramidal cell soma. Both glutamate receptor agonists produced a rapid decrease in MEQ fluorescence that persisted after washout following a 10-min exposure. The effects of NMDA and AMPA were prevented by the competitive antagonists 2-amino-5-phosphonopentanoic acid and 6,7-dinitroquinoxaline-2,3-dione, respectively. Neither tetrodotoxin nor picrotoxin prevented the effect of NMDA or AMPA, indicating the lack of involvement of presynaptic mechanisms. The effects of NMDA and AMPA on MEQ fluorescence were dependent on the levels of extracellular Cl?, but only NMDA responses were dependent on the levels of extracellular Na+. Removal of Ca2+ from the superfusion medium did not alter the effects of NMDA or AMPA on MEQ fluorescence. In addition, neither the Ca2+ ionophore ionomycin nor the L-type voltage-gated Ca2+ channel agonist (Bay K 8644) decreased MEQ fluorescence. The effects of NMDA and AMPA on cell (somal) volume were also assessed with the fluorescent probe calcein acetoxymethyl ester. Both NMDA and AMPA decreased calcein fluorescence (indicating an increased cell volume), but this was preceded by the decrease in MEQ fluorescence (equivalent to an intracellular accumulation of ~20 mM Cl?). Thus, excitotoxins may cause Cl? influx via an anion channel other than the GABAA receptor and/or reduce Cl? efflux mechanisms to produce cell swelling. Such anionic shifts may promote neuronal excitability and cell death following an excitotoxic insult to the hippocampal slice.  相似文献   

16.
Excitotoxicity is one of the most extensively studied processes of neuronal cell death, and plays an important role in many central nervous system (CNS) diseases, including CNS ischemia, trauma, and neurodegenerative disorders. First described by Olney, excitotoxicity was later characterized as an excessive synaptic release of glutamate, which in turn activates postsynaptic glutamate receptors. While almost every glutamate receptor subtype has been implicated in mediating excitotoxic cell death, it is generally accepted that the N-methyl-D-aspartate (NMDA) subtypes play a major role, mainly owing to their high calcium (Ca2+) permeability. However, other glutamate receptor subtypes such as 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA) or kainate receptors have also been attributed a critical role in mediating excitotoxic neuronal cell death. Although the molecular basis of glutamate toxicity is uncertain, there is general agreement that it is in large part Ca2+-dependent. The present review is aimed at summarizing the molecular mechanisms of NMDA receptor and AMPA/kainate receptor-mediated excitotoxic neuronal cell death.  相似文献   

17.
18.
P2X(7) receptors (P2X(7)Rs) are ATP-gated ion channels that trigger caspase-1 activation in the presence of TLR ligands. Inflammatory caspase-1 is responsible for the proteolytic activation of IL-1beta. However, the signaling events that couple P2X(7)Rs to caspase-1 activation remain undefined. In this study we demonstrate that ATP-induced cellular oxidation is critical for caspase-1 activation and subsequent IL-1beta processing. Purinergic receptor stimulation, including P2X(7)Rs, of endotoxin-primed human monocytes augments NADPH oxidase activity whereas concurrent purinergic receptor stimulation triggers protein denitroyslation, leading to the formation of peroxynitrite. IL-1beta cleavage is blocked under conditions where superoxide anion formation is blocked or monocytes are treated with antioxidants or a peroxynitrite scavenger. Nigericin, a K(+)/H(+) antiporter, also increases NADPH oxidase activity, leading to IL-1beta and caspase-1 processing that is blocked by a peroxynitrite scavenger or inhibition of NADPH oxidase. These data demonstrate that signaling via NADPH oxidase activity is fundamental for the processing of mature IL-1beta induced by P2X(7)R stimulation.  相似文献   

19.
Mounting evidence supports the hypothesis that pro-inflammatory cytokines secreted by astrocytes and microglia modulate nociceptive function in the injured CNS and following peripheral nerve damage. Here we examine the involvement of interleukin-1beta (IL-1beta) and microglia activation in nociceptive processing in rat models of spinal cord inflammation. Following application of lipopolysaccharide (LPS) to an ex vivo dorsal horn slice preparation, we observed rapid secretion of IL-1beta which was prevented by inhibition of glial cell metabolism and by inhibitors of either p38 mitogen-activated protein kinase (MAPK) or caspase 1. LPS superfusion also induced rapid secretion of active caspase 1 and apoptosis-associated speck-like protein containing a caspase recruitment domain from the isolated dorsal horn. Extensive microglial cell activation in the dorsal horn, as determined by immunoreactivity for phosphorylated p38 MAPK, was found to correlate with the occurrence of IL-1beta secretion. In behavioural studies, intrathecal injection of LPS in the lumbar spinal cord produced mechanical hyperalgesia in the rat hind-paws which was attenuated by concomitant injections of a p38 MAPK inhibitor, a caspase 1 inhibitor or the rat recombinant interleukin 1 receptor antagonist. These data suggest a critical role for the cytokine IL-1beta and caspase 1 rapidly released by activated microglia in enhancing nociceptive transmission in spinal cord inflammation.  相似文献   

20.
Microglia, glial cells with an immunocompetent role in the CNS, react to stimuli from the surrounding environment with alterations of their phenotypic response. Amongst other activating signals, the endotoxin lipopolysaccharide (LPS) is widely used as a tool to mimic bacterial infection in the CNS. LPS-activated microglia undergo dramatic changes in cell morphology/activity; in particular, they stop proliferating and differentiate from resting to effector cells. Activated microglia also show modifications of purinoreceptor signalling with a significant decrease in P2X(7) expression. In this study, we demonstrate that the down-regulation of the P2X(7) receptor in activated microglia may play an important role in the antiproliferative effect of LPS. Indeed, chronic blockade of the P2X(7) receptor by antagonists (oxidized ATP, KN62 and Brilliant Blue G), or treatment with the ATP-hydrolase apyrase, severely decreases microglial proliferation, down-regulation of P2X(7) receptor expression by small RNA interference (siRNA) decreases cell proliferation, and the proliferation of P2X(7)-deficient N9 clones and primary microglia, in which P2X(7) expression is down-regulated by siRNA, is unaffected by either LPS or P2X(7) antagonists. Furthermore, flow cytometric analysis indicates that exposure to oxidized ATP or treatment with LPS reversibly decreases cell cycle progression, without increasing the percentage of apoptotic cells. Overall, our data show that the P2X(7) receptor plays an important role in controlling microglial proliferation by supporting cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号