首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of CD3 gamma in T cell receptor assembly   总被引:3,自引:0,他引:3       下载免费PDF全文
The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC), transmembrane (TM), and cytoplasmic (CY) domain of CD3 gamma in assembly and cell surface expression of the complete TCR in human T cells. A computer model indicated that the EC domain of CD3 gamma folds as an Ig domain. Based on this model and on alignment studies, two potential interaction sites were predicted in the EC domain of CD3 gamma. Site-directed mutagenesis demonstrated that these sites play a crucial role in TCR assembly probably by binding to CD3 epsilon. Mutagenesis of N-linked glycosylation sites showed that glycosylation of CD3 gamma is not required for TCR assembly and expression. In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta. Deletion of the entire CY domain of CD3 gamma did not prevent assembly and expression of the TCR. In conclusion, this study demonstrated that specific TCR interaction sites exist in both the EC and TM domain of CD3 gamma. Furthermore, the study indicated that, in contrast to CD3 gamma, glycosylation of CD3 delta is required for TCR assembly and expression.  相似文献   

2.
The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication of a single gene. Here, we provide several lines of evidence which indicate that in human and murine T cells which expressed both the CD3-gamma and CD3-delta chains on their surface, the TCR/CD3 complex consisted of a mixture of alpha beta gamma epsilon zeta and alpha beta delta epsilon zeta complexes rather than a single alpha beta gamma delta epsilon zeta complex. First, a CD3-gamma specific antibody failed to co-immunoprecipitate CD3-delta and conversely, several CD3-delta specific antibodies did not coprecipitate CD3-gamma. Secondly, analysis of a panel of human and murine T cell lines demonstrated that CD3-gamma and CD3-delta were expressed at highly variable ratios on their surface. This suggested that these chains were not expressed as a single complex. Thirdly, CD3-gamma and CD3-delta competed for binding to CD3-epsilon in transfected COS cells, suggesting that CD3-gamma and CD3-delta formed mutually exclusive complexes. The existence of these two forms of TCR/CD3 complexes could have important implications in the understanding of T cell receptor function and its role in T cell development.  相似文献   

3.
The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 complex, the role of the CD3 chains for the TCR/CD3 expression have not been experimentally addressed in human T cells. In this study the function of the CD3-zeta chain for the assembly, intracellular processing, and expression of the TCR/CD3 complex in the human leukemic T cell line Jurkat was investigated. The results indicate that: 1) CD3-zeta is required for the cell surface expression of the TCR/CD3 complex; 2) the pentameric form (TCR alpha beta-CD3 gamma delta epsilon) of the TCR/CD3 complex and single TCR chains associated with CD3 (TCR alpha-CD3 gamma delta epsilon and TCR beta-CD3 gamma delta epsilon) are produced in the endoplasmic reticulum in the absence of CD3-zeta; 3) the CD3-zeta does not associate with TCR alpha-CD3 gamma delta epsilon or TCR beta-CD3 gamma delta epsilon complexes; 4) CD3-zeta associate with the pentameric form of the TCR/CD3 complex in the endoplasmic reticulum to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing.  相似文献   

4.
The T-cell receptor (TCR) is a multimeric receptor composed of the Ti alpha beta heterodimer and the noncovalently associated CD3 gamma delta epsilon and zeta(2) chains. All of the TCR chains are required for efficient cell surface expression of the TCR. Previous studies on chimeric molecules containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine-based endocytosis motif partially restored TCR expression in cells with truncated zeta chains, indicating that the zeta chain masks the endocytosis motif in CD3 gamma and thereby stabilizes TCR cell surface expression.  相似文献   

5.
TCR gene therapy is adversely affected by newly formed TCRalphabeta heterodimers comprising exogenous and endogenous TCR chains that dilute expression of transgenic TCRalphabeta dimers and are potentially self-reactive. We have addressed TCR mispairing by using a modified two-chain TCR that encompasses total human CD3zeta with specificities for three different Ags. Transfer of either TCRalpha:CD3zeta or beta:CD3zeta genes alone does not result in surface expression, whereas transfer of both modified TCR chains results in high surface expression, binding of peptide-MHC complexes and Ag-specific T cell functions. Genetic introduction of TCRalphabeta:zeta does not compromise surface expression and functions of an endogenous TCRalphabeta. Flow cytometry fluorescence resonance energy transfer and biochemical analyses demonstrate that TCRalphabeta:CD3zeta is the first strategy that results in highly preferred pairing between CD3zeta-modified TCRalpha and beta chains as well as absence of TCR mispairing between TCR:CD3zeta and nonmodified TCR chains. Intracellular assembly and surface expression of TCR:CD3zeta chains is independent of endogenous CD3gamma, delta, and epsilon. Taken together, our data support the use of TCRalphabeta:CD3zeta to prevent TCR mispairing, which may provide an adequate strategy to enhance efficacy and safety of TCR gene transfer.  相似文献   

6.
At least four different CD3 polypeptide chains are contained within the mature TCR complex, each encompassing one (CD3gamma, CD3delta, and CD3epsilon) or three (CD3zeta) immunoreceptor tyrosine-based activation motifs (ITAMs) within their cytoplasmic domains. Why so many ITAMs are required is unresolved: it has been speculated that the different ITAMs function in signal specification, but they may also serve in signal amplification. Because the CD3zeta chains do not contribute unique signaling functions to the TCR, and because the ITAMs of the CD3-gammadeltaepsilon module alone can endow the TCR with normal signaling capacity, it thus becomes important to examine how the CD3gamma-, delta-, and epsilon-ITAMs regulate TCR signaling. We here report on the role of the CD3gamma chain and the CD3gamma-ITAM in peripheral T cell activation and differentiation to effector function. All T cell responses were reduced or abrogated in T cells derived from CD3gamma null-mutant mice, probably because of decreased expression levels of the mature TCR complex lacking CD3gamma. Consistent with this explanation, T cell responses proceed undisturbed in the absence of a functional CD3gamma-ITAM. Loss of integrity of the CD3gamma-ITAM only slightly impaired the regulation of expression of activation markers, suggesting a quantitative contribution of the CD3gamma-ITAM in this process. Nevertheless, the induction of an in vivo T cell response in influenza A virus-infected CD3gamma-ITAM-deficient mice proceeds normally. Therefore, if ITAMs can function in signal specification, it is likely that either the CD3delta and/or the CD3epsilon chains endow the TCR with qualitatively unique signaling functions.  相似文献   

7.
The TCR consists of the Ti alpha beta heterodimer and the associated CD3 chains, CD3 gamma delta epsilon zeta 2 or zeta eta. The structural relationships between the subunits of the Ti/CD3 complex are still not fully understood. To explore the roles of the individual CD3 chains for the assembly, intracellular processing, and expression of the TCR, mutants of the T cell line Jurkat were isolated. One variant, JGN, was found to produce all the Ti/CD3 components with the exception of CD3-gamma. The results indicate that: 1) the tetrameric form (Ti alpha beta-CD3 delta epsilon) of the Ti/CD3 complex is produced in the endoplasmic reticulum in the absence of CD3-gamma; 2) CD3-zeta does not associate with the Ti alpha beta-CD3 delta epsilon complex; 3) the Ti alpha beta-CD3 delta epsilon complex is not exported from the endoplasmic reticulum to the Golgi apparatus; and 4) CD3-gamma is required for cell surface expression of the Ti/CD3 complex. Transfection of the wild-type CD3-gamma gene into JGN reconstituted expression of functional Ti/CD3 complexes, and analysis of T cell lines producing different amounts of CD3-gamma indicated that CD3-gamma and CD3-delta competed for the binding to CD3-epsilon.  相似文献   

8.
9.
B A Irving  A Weiss 《Cell》1991,64(5):891-901
The function of the T cell antigen receptor (TCR) invariant chains, CD3 gamma, delta, epsilon, and zeta, is poorly understood. Evidence suggests that CD3 couples receptor ligand binding to intracellular signaling events. To examine the role of the CD3 zeta chain in TCR-mediated signal transduction, a chimeric protein linking the extracellular and transmembrane domains of CD8 to the cytoplasmic domain of the zeta chain was constructed. The CD8/zeta chimera is expressed independently of the TCR and is capable of transducing signals that, by criteria of early and late activation, are indistinguishable from those generated by the intact TCR. These data indicate that CD8/zeta can activate the appropriate signal transduction pathways in the absence of CD3 gamma, delta, and epsilon, and suggest that the role of CD3 zeta is to couple the TCR to intracellular signal transduction mechanisms.  相似文献   

10.
Infection and transformation by human T cell leukemia virus type I (HTLV-I) up-regulates expression of several inducible genes including those coding for cytokines involved in the proliferation of normal and leukemic T cells. We demonstrate that HTLV-I can also shut off expression of the CD3-gamma, delta, epsilon, and zeta genes that code for the constant elements of the TCR for Ag. In addition, the T cell-specific CD3-epsilon enhancer was found to be inactive in a HTLV-I-infected T cell clone. This HTLV-I-infected T cell clone (827-p19-II) that could be cultured in the absence of IL-2 lacked the CD3 proteins but did express the TCR-alpha and -beta proteins intracellularly. In the absence of the CD3-gamma, delta, epsilon, and zeta polypeptide chains the disulfide bridged TCR-alpha/beta heterodimer was not formed and the Ag receptor did not appear at the cell surface. These results allowed two major conclusions: first, HTLV-I infection has an effect on the T cell specific regulatory elements that coordinately regulate CD3-gamma, delta, epsilon, and zeta expression and second, the CD3-gamma, delta, epsilon, and zeta proteins are necessary for formation and routing the variable TCR-alpha/beta (or -gamma/delta) heterodimer to the human T cell surface.  相似文献   

11.
Most T lymphocytes express on their surfaces a multisubunit receptor complex, the T cell antigen receptor (TCR) containing alpha, beta, gamma, delta, epsilon, and zeta molecules, that has been widely studied as a model system for protein quality control. Although the parameters of TCR assembly are relatively well established, little information exists regarding the stage(s) of TCR oligomerization where folding of TCR proteins is completed. Here we evaluated the modification of TCR glycoproteins by the endoplasmic reticulum folding sensor enzyme UDP-glucose:glycoprotein glucosyltransferase (GT) as a unique and sensitive indicator of how TCR subunits assembled into multisubunit complexes are perceived by the endoplasmic reticulum quality control system. These results demonstrate that all TCR subunits containing N-glycans were modified by GT and that TCR proteins were differentially reglucosylated during their assembly with partner TCR chains. Importantly, these data show that GT modification of most TCR subunits persisted until assembly of CD3alpha beta chains and formation of CD3-associated, disulfide-linked alpha beta heterodimers. These studies provide a novel evaluation of the folding status of TCR glycoproteins during their assembly into multisubunit complexes and are consistent with the concept that TCR folding is finalized convergent with formation of alpha beta delta epsilon gamma epsilon complexes.  相似文献   

12.
The TCR for Ag, on the majority of human T cells, is a disulfide-linked heterodimer composed of TCR-alpha and -beta chains noncovalently associated with the monomorphic CD3 complex composed of the CD3-gamma, -delta, -epsilon, and -zeta chains. The interactions involved in the assembly of the various components of this multimeric protein complex are not fully understood. In this report, a variant of the human leukemic T cell line Jurkat that synthesized all of the known components of the TCR/CD3 complex but fails to express the TCR/CD3 complex at the cell surface is further characterized. This variant, J79, has a mutated TCR-alpha chain that does not affect the assembly of the pentameric form (TCR-alpha beta-CD3-gamma delta epsilon) of the TCR/CD3 complex but inhibits the assembly of the CD3-zeta homodimer with the rest of the complex (TCR-alpha beta-CD3-gamma delta epsilon----TCR-alpha beta-CD3-gamma delta epsilon zeta 2). Transfecting a wild-type TCR-alpha gene into J79 reconstituted expression of a complete functionally competent TCR/CD3 complex at the cell surface. The results indicate that the TCR-alpha chain plays a crucial role in the assembly of the CD3-zeta homodimer with the pentameric form of the TCR/CD3 complex.  相似文献   

13.
The T cell antigen receptor (TCR) consists of an alphabeta heterodimer and associated invariant CD3gamma, delta, epsilon, and zeta chains (TCR/CD3 complex). The general stoichiometry of the receptor complex, which is believed to be one molecule each of TCRalpha, TCRbeta, CD3gamma, and CD3delta and two molecules each of CD3epsilon and CD3zeta, is not clearly understood. Although it has been shown that there are two chains of CD3epsilon and CD3zeta, the stoichiometry of CD3gamma or CD3delta chains in the surface antigen receptor complex has not been determined. In the present study, transgenic mice expressing an altered form of mouse CD3delta and CD3gamma were employed to show that the surface TCR complexes contain one molecule each of CD3delta and CD3gamma. Thymocytes from wild type and CD3 chain transgenic mice on the appropriate knockout background were surface-biotinylated and immunoprecipitated using a specific antibody. The immunoprecipitates were resolved in two dimensions under nonreducing/reducing conditions to determine the stoichiometry of CD3delta and CD3gamma in the surface antigen receptor complex. Our data clearly show the presence of one molecule each of CD3delta and CD3gamma in the surface TCR/CD3 complex.  相似文献   

14.
T cell activation through the antigen receptor (TCR) involves the cytoplasmic tails of the CD3 subunits CD3gamma, CD3delta, CD3epsilon, and CD3zeta. Whereas the biological significance of the cytoplasmic tails of these molecules is suggested, in part, by their evolutionarily conserved sequences, their interactions with signal transduction molecules are not completely understood. We used affinity chromatography columns of glutathione S-transferase fused to the CD3epsilon cytoplasmic tail to isolate proteins that specifically interact with this subunit. In this way, we identified the shuttling protein nucleolin as a specific CD3epsilon-interacting molecule. Using competition studies and affinity chromatography on peptide columns, we were able to identify a central proline-rich sequence as the nucleolin-interacting sequence in CD3epsilon. Transfection in COS cells of wild type CD3epsilon, but not of nonbinding mutants of CD3epsilon, resulted in redistribution of nucleolin from the nucleus and nucleoli to the cytoplasm. This property was transferred to a CD8 protein chimera by appending the cytoplasmic tail of CD3epsilon. We also found that nucleolin associated with the TCR complex. This association was increased upon TCR engagement, suggesting that the CD3epsilon/nucleolin interaction may have a role in T cell activation.  相似文献   

15.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

16.
The T-cell receptor (TCR) is a multisubunit complex consisting of the clonotypic Ti alpha and beta (or Ti gamma and delta) subunits and the invariant CD3 gamma, CD3 delta, CD3 epsilon, CD3 zeta, and CD3 eta subunits. Herein, we describe an additional product from the CD3 zeta/eta gene locus which we have termed CD3 theta. The cDNA derives from the first seven exons common to CD3 zeta and CD3 eta, 94 base pairs (bp) of the CD3 eta-specific exon 9 and an additional exon 10 encoding the carboxyl-terminal 15 amino acids and the 3'-untranslated region. The expression of CD3 theta is equivalent to that of CD3 eta in tissue distribution and level of expression as judged by RNase protection analysis. Despite the identity of the amino-terminal 121 amino acids of CD3 zeta, CD3 eta, and CD3 theta and an additional 31 amino acids shared between CD3 eta and CD3 theta, transfection of CD3 theta into the CD3 zeta- eta- T-cell hybridoma, MA5.8, failed to restore detectable surface TCR expression in contrast to transfection with CD3 zeta or CD3 eta. Analysis of the CD3 theta protein in transfectants indicated that CD3 theta is associated with the TCR intracellularly. However, unlike with CD3 zeta, Ti alpha-beta chains remain endoglycosidase H sensitive, suggesting a role for the unique COOH-terminal segment of CD3 theta in mediating TCR retention and/or degradation in a pre-Golgi compartment.  相似文献   

17.
The T cell receptor (TCR) for antigen consists, on the majority of peripheral lymphocytes, of an immunoglobulin-like, disulfide-linked heterodimeric glycoprotein: the alpha and beta chain. These proteins are noncovalently linked to at least four nonvariant proteins which comprise the CD3 complex: CD3 gamma, delta, epsilon, and zeta. Whereas the TCR alpha and beta proteins have positively charged residues in the transmembrane region, all the CD3 proteins have similarly placed negatively charged amino acid residues. It has been suggested that these basic and acidic amino acid residues may play an important role in TCR.CD3 complex assembly and/or function. In this paper, the structural and functional role of the lysine and arginine residues of the TCR alpha chain was addressed using oligonucleotide mediated site directed mutagenesis. The Arg256 and Lys261 residues of the TCR alpha cDNA of the HPB-ALL cell line were mutated to either Gly256 and/or Ile261. The altered cDNAs were transfected into a TCR alpha negative recipient mutant cell line of REX, clone 20A. Metabolic labeling of the T cell transfectants showed that mutation of either the Arg256 or Lys261 amino acid residues had no effect on the ability of the TCR alpha chain to form either a heterodimer with the TCR beta chain or a complex with the CD3 gamma, delta, and epsilon proteins. Consequently, the Arg256 to Gly256 and Lys261 to Ile261 mutations did not prevent the formation of a mature, functional TCR.CD3 complex on the cell surface as determined by immunofluorescence, cell surface radioiodination, and the ability of the transfectants to mobilize intracellular calcium after stimulation with a mitogenic anti-CD3 epsilon monoclonal antibody. In contrast, a mutant cDNA in which both the Arg256 and Lys261 residues were mutated to Gly256 and Ile261, respectively, failed to reconstitute the cell surface expression of the TCR.CD3 complex and, consequently, the ability to respond to mitogenic stimuli. In the absence of both the Arg256 and Lys261 residues, TCR alpha beta heterodimer formation was not observed. Cotransfection studies in COS cells showed that the failure of assembly of a heterodimer was likely due to an inability of the mutated TCR alpha chain to form a subcomplex with either the CD3 gamma, delta, epsilon, or zeta proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
An early event in T cell antigen receptor (TCR)-mediated signal transduction is the activation of a protein tyrosine kinase (PTK) pathway. An unidentified PTK activity and a kinase substrate termed ZAP-70 have previously been shown to associate with TCR zeta upon cross-linking of TCR beta. Here we report that TCR activation, by antibody cross-linking of either TCR beta or CD3 epsilon, results in the association of a PTK activity with both CD3 and TCR zeta. A number of in vitro PTK substrates are also associated with CD3 and TCR zeta, including CD3 epsilon, TCR zeta, p60fyn, p62yes, and a predominant 70-kDa protein (ZAP-70). The shared PTK activity and PTK substrates suggest that both CD3 and TCR zeta are involved in signal transduction via a shared pathway. We used [alpha-32P]gamma-azidoanilido ATP, a photoreactive analogue of ATP, to detect CD3-associated proteins that bound ATP upon TCR activation, reasoning that such proteins could represent PTKs. A 70-kDa protein bound [alpha-32P]gamma-azidoanilido ATP only upon TCR activation, and we propose that this protein and the 70-kDa PTK substrate are the same protein. Furthermore, we propose that this protein is responsible for the PTK activity observed to be associated with TCR zeta and CD3 upon TCR activation.  相似文献   

19.
T Saito 《Human cell》1990,3(3):183-192
T cell receptor complex is composed of at least 7 different polypeptides and is one of the most sophisticated receptor. There are two types of T cell receptor (TCR); alpha beta and gamma delta, both of which are composed of a heterodimer and associated with invariant CD3 complexes on the cell surface. T cells expressing alpha beta dimer recognize antigen-peptides in the context of self-MHC molecules, whereas the specificity and function of gamma delta T cells are largely unknown. Gene organization of alpha beta and gamma delta indicates the difference of mechanism to generate diversity. Whereas alpha and beta genes have a large number of V genes, those of gamma and delta genes are limited. However, especially for delta gene, the repertoire is largely produced by junctional diversity. There are increasing data showing new TCR heterodimers; such as beta delta heterodimer in human, beta homodimer in mouse and unknown new heterodimer in chicken, which are expressed on the cell surface in the association with CD3 complex. The characterization of these new receptor dimers and the function of cells expressing these receptors have to be determined. Among CD3 complex, zeta and eta chains are most important for signal transduction after antigen-recognition by TCR. eta gene is recently cloned and now found to be produced by an alternative splicing of a common gene with zeta chains gene. Tyrosine++ phosphorylation of zeta chain seems to be one of the earliest events of T cell activation. Since fyn, one of src oncogene family possessing tyrosine++ kinase function, is co-precipitated with TCR-CD3 complex, fyn seems to be involved in early phosphorylation for T cell activation. Positive and negative selection of thymocytes has been shown to occur via TCR using TCR-transgenic mice model. Molecular mechanism of the selection should be determined.  相似文献   

20.
Recent studies have demonstrated that the CD3-zeta subunit of the T cell antigen receptor (TCR) complex is involved in signal transduction. However, the function of the remaining invariant subunits, CD3-gamma, -delta, and epsilon, is still poorly understood. To examine their role in TCR function, we have constructed TCR/CD3 complexes devoid of functional zeta subunit and showed that they are still able to trigger the production of interleukin-2 in response to antigen or superantigen. These data, together with previous results, indicate that the TCR/CD3 complex is composed of at least two parallel transducing units, made of the gamma delta epsilon and zeta chains, respectively. Furthermore, the analysis of partially truncated zeta chains has led us to individualize a functional domain that may have constituted the building block of most of the transducing subunits associated with antigen receptors and some Fc receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号