首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insertion of an endovascular prosthesis is known to have a thrombogenic effect that is also a consequence of the interaction between the flowing blood and the stented arterial segment; in fact the prosthesis induces a compliance mismatch and a possible small expansion along the vessel that eventually gives rise to an anomalous distribution of wall shear stresses. The fluid dynamics inside a rectilinear elastic vessel with compliance and section variation is studied here numerically. A recently introduced perturbative approach is employed to model the interaction between the fluid and the elastic tissue; this approximate technique is first validated by comparison with a complete solution within a simple one-dimensional model of the same system. Then it is applied to an axisymmetric model in order to evaluate the flow dynamics and the distribution of wall shear stress in the stented vessel. Compliance mismatch is shown to produce more intense negative wall shear stresses in the stented segment while rapid variations of wall shear stress are found at the stent ends. These effects are enhanced when the prosthesis is accompanied by a small increase of the vessel lumen.  相似文献   

2.
The haemodynamic behaviour of blood inside a coronary artery after stenting is greatly affected by individual stent features as well as complex geometrical properties of the artery including tortuosity and curvature. Regions at higher risk of restenosis, as measured by low wall shear stress (WSS < 0.5 Pa), have not yet been studied in detail in curved stented arteries. In this study, three-dimensional computational modelling and computational fluid dynamics methodologies were used to analyse the haemodynamic characteristics in curved stented arteries using several common stent models. Results in this study showed that stent strut thickness was one major factor influencing the distribution of WSS in curved arteries. Regions of low WSS were found behind struts, particularly those oriented at a large angle relative to the streamwise flow direction. These findings were similar to those obtained in studies of straight arteries. An uneven distribution of WSS at the inner and outer bends of curved arteries was observed where the WSS was lower at the inner bend. In this study, it was also shown that stents with a helical configuration generated an extra swirling component of the flow based on the helical direction; however, this extra swirl in the flow field did not cause significant changes on the distribution of WSS under the current setup.  相似文献   

3.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were 'treated' with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

4.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were ‘treated’ with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   

5.
Carotid artery stenting (CAS) has emerged as a minimally invasive alternative to endarterectomy but its use in clinical treatment is limited due to the post-stenting complications. Haemodynamic actors, related to blood flow in the stented vessel, have been suggested to play a role in the endothelium response to stenting, including adverse reactions such as in-stent restenosis and late thrombosis. Accessing the flow-related shear forces acting on the endothelium in vivo requires space and time resolutions which are currently not achievable with non-invasive clinical imaging techniques but can be obtained from image-based computational analysis. In this study, we present a framework for accurate determination of the wall shear stress (WSS) in a mildly stenosed carotid artery after the implantation of a stent, resembling the commercially available Acculink (Abbott Laboratories, Abbott Park, Illinois, USA). Starting from angiographic CT images of the vessel lumen and a micro-CT scan of the stent, a finite element analysis is carried out in order to deploy the stent in the vessel, reproducing CAS in silico. Then, based on the post-stenting anatomy, the vessel is perfused using a set of boundary conditions: total pressure is applied at the inlet, and impedances that are assumed to be insensitive to the presence of the stent are imposed at the outlets. Evaluation of the CAS outcome from a geometrical and haemodynamic perspective shows the presence of atheroprone regions (low time-average WSS, high relative residence time) colocalised with stent malapposition and stent strut interconnections. Stent struts remain unapposed in the ostium of the external carotid artery disturbing the flow and generating abnormal shear forces, which could trigger thromboembolic events.  相似文献   

6.
Cardiovascular diseases are the number one cause of death in the world, making the understanding of hemodynamics and development of treatment options imperative. The most common modality for treatment of occlusive coronary artery diseases is the use of stents. Stent design profoundly influences the postprocedural hemodynamic and solid mechanical environment of the stented artery. However, despite their wide acceptance, the incidence of stent late restenosis is still high (Zwart et al., 2010, "Coronary Stent Thrombosis in the Current Era: Challenges and Opportunities for Treatment," Current Treatment Options in Cardiovascular Medicine, 12(1), pp. 46-57), and it is most prevailing at the proximal and distal ends of the stent. In this work, we focus our investigation on the localized hemodynamic effects of compliance mismatch due to the presence of a stent in an artery. The compliance mismatch in a stented artery is maximized at the proximal and distal ends of the stent. Hence, it is our objective to understand and reveal the mechanism by which changes in compliance contribute to the generation of nonphysiological wall shear stress (WSS). Such adverse hemodynamic conditions could have an effect on the onset of restenosis. Three-dimensional, spatiotemporally resolved computational fluid dynamics simulations of pulsatile flow with fluid-structure interaction were carried out for a simplified coronary artery with physiologically relevant flow parameters. A model with uniform elastic modulus is used as the baseline control case. In order to study the effect of compliance variation on local hemodynamics, this baseline model is compared with models where the elastic modulus was increased by two-, five-, and tenfold in the middle of the vessel. The simulations provided detailed information regarding the recirculation zone dynamics formed during flow reversals. The results suggest that discontinuities in compliance cause critical changes in local hemodynamics, namely, altering the local pressure and velocity gradients. The change in pressure gradient at the discontinuity was as high as 90%. The corresponding changes in WSS and oscillatory shear index calculated were 9% and 15%, respectively. We demonstrate that these changes are attributed to the physical mechanism associating the pressure gradient discontinuities to the production of vorticity (vorticity flux) due to the presence of the stent. The pressure gradient discontinuities and augmented vorticity flux are affecting the wall shear stresses. As a result, this work reveals how compliance variations act to modify the near wall hemodynamics of stented arteries.  相似文献   

7.
Despite their success, stenting procedures are still associated to some clinical problems like sub-acute thrombosis and in-stent restenosis. Several clinical studies associate these phenomena to a combination of both structural and hemodynamic alterations caused by stent implantation. Recently, numerical models have been widely used in the literature to investigate stenting procedures but always from either a purely structural or fluid dynamic point of view. The aim of this work is the implementation of sequential structural and fluid dynamic numerical models to provide a better understanding of stenting procedures in coronary bifurcations. In particular, the realistic geometrical configurations obtained with structural simulations were used to create the fluid domains employed within transient fluid dynamic analyses. This sequential approach was applied to investigate the final kissing balloon (FKB) inflation during the provisional side branch technique. Mechanical stresses in the arterial wall and the stent as well as wall shear stresses along the arterial wall were examined before and after the FKB deployment. FKB provoked average mechanical stresses in the arterial wall almost 2.5 times higher with respect to those induced by inflation of the stent in the main branch only. Results also enlightened FKB benefits in terms of improved local blood flow pattern for the side branch access. As a drawback, the FKB generates a larger region of low wall shear stress. In particular, after FKB the percentage of area characterized by wall shear stresses lower than 0.5?Pa was 79.0%, while before the FKB it was 62.3%. For these reasons, a new tapered balloon dedicated to bifurcations was proposed. The inclusion of the modified balloon has reduced the mechanical stresses in the proximal arterial vessel to 40% and the low wall shear stress coverage area to 71.3%. In conclusion, these results show the relevance of the adopted sequential approach to study the wall mechanics and the hemodynamics created by stent deployment.  相似文献   

8.
Finite-element modeling of the hemodynamics of stented aneurysms   总被引:6,自引:0,他引:6  
BACKGROUND: Computational fluid dynamics (CFD) simulations are used to analyze the wall shear stress distribution and flow streamlines near the throat of a stented basilar side-wall aneurysm. Previous studies of stented aneurysm flows used low mesh resolution, did not include mesh convergence analyses, and depended upon conformal meshing techniques that apply only to very artificial stent geometries. METHOD OF APPROACH: We utilize general-purpose computer assisted design and unstructured mesh generation tools that apply in principle to stents and vasculature of arbitrary complexity. A mesh convergence analysis for stented steady flow is performed, varying node spacing near the stent. Physiologically realistic pulsatile simulations are then performed using the converged mesh. RESULTS: Artifact-free resolution of the wall shear stress field on stent wires requires a node spacing of approximately 1/3 wire radius. Large-scale flow features tied to the velocity field are, however, captured at coarser resolution (nodes spaced by about one wire radius or more). CONCLUSIONS: Results are consistent with previous work, but our methods yield more detailed insights into the complex flow dynamics. However, routine applications of CFD to anatomically realistic cases still depend upon further development of dedicated algorithms, most crucially to handle geometry definition and mesh generation for complicated stent deployments.  相似文献   

9.
A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.  相似文献   

10.
Hemodynamic factors such as low wall shear stress have been shown to influence endothelial healing and atherogenesis in stent-free vessels. However, in stented vessels, a reliable quantitative analysis of such relations has not been possible due to the lack of a suitable method for the accurate acquisition of blood flow. The objective of this work was to develop a method for the precise reconstruction of hemodynamics and quantification of wall shear stress in stented vessels. We have developed such a method that can be applied to vessels stented in or ex vivo and processed ex vivo. Here we stented the coronary arteries of ex vivo porcine hearts, performed vascular corrosion casting, acquired the vessel geometry using micro-computed tomography and reconstructed blood flow and shear stress using computational fluid dynamics. The method yields accurate local flow information through anatomic fidelity, capturing in detail the stent geometry, arterial tissue prolapse, radial and axial arterial deformation as well as strut malapposition. This novel compound method may serve as a unique tool for spatially resolved analysis of the relationship between hemodynamic factors and vascular biology. It can further be employed to optimize stent design and stenting strategies.  相似文献   

11.
Our paper builds on existing research into conventional bare metal stents in order to assess new devices specifically designed for coronary bifurcation angioplasty. The first aim is to validate the numerical model against data from in vitro experiments on stented coronary phantoms. A surface mesh was built in accordance with micro-computed tomography images obtained from coronary stents implanted in silicone models and used for numerical analysis. Computational simulations for steady and unsteady cases generally agreed with their experimental counterparts. A second objective is to compare the hemodynamic performance of one of these new devices (Stentys) to that of conventional devices and stenting techniques in a simplified coronary bifurcation model. Four different coronary bifurcation stenting techniques were analyzed. We have focused on factors contributing to restenosis, such as wall shear stress (WSS), oscillatory shear index (OSI), pressure loss, and local normalized helicity (LNH). It was found that bifurcation-specific stents implanted in the side branch led to increased malapposition. This effect has proved to be more important than stent specific design characteristics such as strut size (different for conventional and Stentys stent). This conclusion is confirmed by means of drop in pressure and mechanical energy loss rate calculation; for the latter, the increase ranged from 9% to 17%, depending on the stenting technique, when dedicated stents were implanted in the side branch. The behavior patterns presented in this study should be double-checked against those obtained in more realistic geometries.  相似文献   

12.
The deployment of a coronary stent near complex lesions can sometimes lead to incomplete stent apposition (ISA), an undesirable side effect of coronary stent implantation. Three-dimensional computational fluid dynamics (CFD) calculations are performed on simplified stent models (with either square or circular cross-section struts) inside an idealised coronary artery to analyse the effect of different levels of ISA to the change in haemodynamics inside the artery. The clinical significance of ISA is reported using haemodynamic metrics like wall shear stress (WSS) and wall shear stress gradient (WSSG). A coronary stent with square cross-sectional strut shows different levels of reverse flow for malapposition distance (MD) between 0 mm and 0.12 mm. Chaotic blood flow is usually observed at late diastole and early systole for MD=0 mm and 0.12 mm but are suppressed for MD=0.06 mm. The struts with circular cross section delay the flow chaotic process as compared to square cross-sectional struts at the same MD and also reduce the level of fluctuations found in the flow field. However, further increase in MD can lead to chaotic flow not only at late diastole and early systole, but it also leads to chaotic flow at the end of systole. In all cases, WSS increases above the threshold value (0.5 Pa) as MD increases due to the diminishing reverse flow near the artery wall. Increasing MD also results in an elevated WSSG as flow becomes more chaotic, except for square struts at MD=0.06 mm.  相似文献   

13.
A major consequence of stent implantation is restenosis that occurs due to neointimal formation. This patho-physiologic process of tissue growth may not be completely eliminated. Recent evidence suggests that there are several factors such as geometry and size of vessel, and stent design that alter hemodynamic parameters, including local wall shear stress distributions, all of which influence the restenosis process. The present three-dimensional analysis of developing pulsatile flow in a deployed coronary stent quantifies hemodynamic parameters and illustrates the changes in local wall shear stress distributions and their impact on restenosis. The present model evaluates the effect of entrance flow, where the stent is placed at the entrance region of a branched coronary artery. Stent geometry showed a complex three-dimensional variation of wall shear stress distributions within the stented region. Higher order of magnitude of wall shear stress of 530 dyn/cm2 is observed on the surface of cross-link intersections at the entrance of the stent. A low positive wall shear stress of 10 dyn/cm2 and a negative wall shear stress of -10 dyn/cm2 are seen at the immediate upstream and downstream regions of strut intersections, respectively. Modified oscillatory shear index is calculated which showed persistent recirculation at the downstream region of each strut intersection. The portions of the vessel where there is low and negative wall shear stress may represent locations of thrombus formation and platelet accumulation. The present results indicate that the immediate downstream regions of strut intersections are areas highly susceptible to restenosis, whereas a high shear stress at the strut intersection may cause platelet activation and free emboli formation.  相似文献   

14.
Pulsatile flow fields in a cerebrovascular side-wall aneurysm model with a wide ostium after stenting are presented in terms of particle tracking velocimetry measurements and flow visualization. Among the stent parameters the shape, helix versus mesh, was selected to study its effect on the changes of intraaneurysmal hemodynamics for the reference of minimally invasive endovascular aneurysm treatment. The blocking ratio of the stents was fixed at 30%. The Womersley number was 3.9 and the mean, peak, and minimal Reynolds numbers based on the bulk average velocity and diameter of the parent vessel were 600, 850, and 300, respectively. Four consecutive flow-rate phases were selected to characterize the intra-aneurysmal flow. The results are characterized in terms of velocity vector field, regional average velocity, and intra-aneurysmal vorticity/circulation/wall shear stress. It is found that the hemodynamic features inside the aneurysm alter markedly with the shape of the stent and the size of the orifice. Both stents investigated induce favorable changes in the intra-aneurysmal flow stasis as well as direction and undulation of wall shear stresses. A comparison of the results of the helix to mesh stent shows that the former is more favorable for endovascular treatment.  相似文献   

15.
Restenosis resulting from neointimal hyperplasia (NH) limits the effectiveness of intravascular stents. Rates of restenosis vary with stent geometry, but whether stents affect spatial and temporal distributions of wall shear stress (WSS) in vivo is unknown. We tested the hypothesis that alterations in spatial WSS after stent implantation predict sites of NH in rabbit iliac arteries. Antegrade iliac artery stent implantation was performed under angiography, and blood flow was measured before casting 14 or 21 days after implantation. Iliac artery blood flow domains were obtained from three-dimensional microfocal X-ray computed tomography imaging and reconstruction of the arterial casts. Indexes of WSS were determined using three-dimensional computational fluid dynamics. Vascular histology was unchanged proximal and distal to the stent. Time-dependent NH was localized within the stented region and was greatest in regions exposed to low WSS and acute elevations in spatial WSS gradients. The lowest values of WSS spatially localized to the stented area of a theoretical artery progressively increased after 14 and 21 days as NH occurred within these regions. This NH abolished spatial disparity in distributions of WSS. The results suggest that stents may introduce spatial alterations in WSS that modulate NH in vivo.  相似文献   

16.

Background  

The process of restenosis after a stenting procedure is related to local biomechanical environment. Arterial wall stresses caused by the interaction of the stent with the vascular wall and possibly stress induced stent strut fracture are two important parameters. The knowledge of these parameters after stent deployment in a patient derived 3D reconstruction of a diseased coronary artery might give insights in the understanding of the process of restenosis.  相似文献   

17.

Background  

In-stent restenosis rates have been closely linked to the wall shear stress distribution within a stented arterial segment, which in turn is a function of stent design. Unfortunately, evaluation of hemodynamic performance can only be evaluated with long term clinical trials. In this work we introduce a set of metrics, based on statistical moments, that can be used to evaluate the hemodynamic performance of a stent in a standardized way. They are presented in the context of a 2D flow study, which analyzes the impact of different strut profiles on the wall shear stress distribution for stented coronary arteries.  相似文献   

18.
Cardiovascular stent design and vessel stresses: a finite element analysis   总被引:19,自引:0,他引:19  
Intravascular stents of various designs are currently in use to restore patency in atherosclerotic coronary arteries and it has been found that different stents have different in-stent restenosis rates. It has been hypothesized that the level of vascular injury caused to a vessel by a stent determines the level of restenosis. Computational studies may be used to investigate the mechanical behaviour of stents and to determine the biomechanical interaction between the stent and the artery in a stenting procedure. In this paper, we test the hypothesis that two different stent designs will provoke different levels of stress within an atherosclerotic artery and hence cause different levels of vascular injury. The stents analysed using the finite-element method were the S7 (Medtronic AVE) and the NIR (Boston Scientific) stent designs. An analysis of the arterial wall stresses in the stented arteries indicates that the modular S7 stent design causes lower stress to an atherosclerotic vessel with a localized stenotic lesion compared to the slotted tube NIR design. These results correlate with observed clinical restenosis rates, which have found higher restenosis rates in the NIR compared with the S7 stent design. Therefore, the testing methodology outlined here is proposed as a pre-clinical testing tool, which could be used to compare and contrast existing stent designs and to develop novel stent designs.  相似文献   

19.
Endovascular stents are increasingly being used to treat cerebral aneurysms. Mechanically, a cerebrovascular stent must have a low radial stiffness to prevent vessel dissection and rupture. To minimize these complications, we need to consider a stent design that has a low radial force and disperses the load within the stented artery. Therefore, highly distensible, load-dispersion stent designs are desirable for intracranial stenting. This study focused on closed-cell stent geometries and calculated the differences in stress within the artery because of the structure by using finite-element modeling. The results showed that the design with hexagonal cell geometry stretched in the circumferential direction had lower radial and circumferential stresses than did the other models. Comparing the maximum radial stress of our models, stress reduction of 35% was obtained with this design. Moreover, its radial stress was 47 kPa, which was similar to the critical stress of 42 kPa assumed in this study. This stent model was characterized by narrow strut spacing and a large surface area, which was dominated by the twined-spring geometry. It had low radial and circumferential stresses and a dispersed stress distribution compared with the other models. Therefore, this design is a desirable load-dispersing design for cerebrovascular treatment.  相似文献   

20.
Numerical simulations of flow in straight elastic (moving wall) tubes subjected to a sinusoidal pressure gradient were performed for conditions prevailing in large and medium sized arteries. The effects of varying the phase angle between the pressure gradient and the tube radius, the amplitude of wall motion, and the unsteadiness parameter (alpha) on flow rate and wall shear stress were investigated. Mean and peak flow rates and shear stresses were found to be strongly affected by the phase angle between the pressure gradient and the tube radius with greater sensitivity at higher diameter variation and higher alpha. In large artery simulations (alpha = 12), means flow rate was found to be 60% higher and peak flow rate to be 73% higher than corresponding rigid tube values for certain phase angles, while a threefold increase in mean wall shear stress and sevenfold increase in peak wall shear stress were observed in a sensitive phase angle range. Significant reversal in the wall shear stress direction occurred in the sensitive phase angle range even when there was negligible flow rate reversal. All effects were greatly diminished in simulations of medium sized vessels (alpha = 4). Some experimental evidence to support the predictions of a strong effect of phase angle on wall shear stress in large vessels is presented. Finally, physiological implications of the present work are discussed from a basis of aortic input impedance data, and a physical explanation for the extreme sensitivity of the flow field to small amplitude wall motion at high alpha is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号