首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is known that only a single-nucleotide substitution (SNP: a single nucleotide polymorphism) in the sequence of a TATA box can influence the affinity of the interaction of TBP with the TATA box and contribute to the pathogenesis of complex hereditary human diseases and sometimes may be a cause of monogenic diseases (for instance, β-thalassemia). In the present work, we studied the interaction of human TBP with a double-stranded oligodeoxyribonucleotide (ODN) 15 or 26 bp long identical to a TATA box of promoters of a real-life human gene, TPI or LEP, and labeled with fluorophores TAMRA and FAM. To analyze the interaction of TBP with a TATA box of an ancestral or minor allele (SNP in the TATA box) in real time, we used the stopped-flow method with detection of a Förster resonance energy transfer (FRET) signal. The nature of the resulting kinetic curves reflecting changes in the FRET signal (and therefore of DNA conformation during the interaction with TBP) pointed to a multistage mechanism of the formation of the TBP complex with the TATA-containing ODN. The results showed that with the increasing concentration and length of the ODN, heterogeneity of conformational changes (taking place during the first second of the interaction with TBP) in DNA also increases. In contrast to the initial nonspecific interaction, the subsequent phases strictly depend on TBP concentration: at the TBP:ODN ratio of 10:1, the velocity of change of the FRET signal increases approximately 100-fold.  相似文献   

3.
4.
5.
TATA box结合蛋白质(TBP)是RNA聚合酶Ⅱ转录因子TFIID的组成成分,它可与DNA序列上游区的TATA box元件特异地结合.对TBP及TATA box-TBP复合物的三维结构进行扼要的介绍,探讨其在起始转录过程中所起的作用.  相似文献   

6.
7.
8.
    
Strahs D  Barash D  Qian X  Schlick T 《Biopolymers》2003,69(2):216-243
  相似文献   

9.
Identification of promoter region is an important part of gene annotation. Identification of promoters in eukaryotes is important as promoters modulate various metabolic functions and cellular stress responses. In this work, a novel approach utilizing intensity values of tilling microarray data for a model eukaryotic plant Arabidopsis thaliana, was used to specify promoter region from non-promoter region. A feed-forward back propagation neural network model supported by genetic algorithm was employed to predict the class of data with a window size of 41. A dataset comprising of 2992 data vectors representing both promoter and non-promoter regions, chosen randomly from probe intensity vectors for whole genome of Arabidopsis thaliana generated through tilling microarray technique was used. The classifier model shows prediction accuracy of 69.73% and 65.36% on training and validation sets, respectively. Further, a concept of distance based class membership was used to validate reliability of classifier, which showed promising results. The study shows the usability of micro-array probe intensities to predict the promoter regions in eukaryotic genomes.  相似文献   

10.
11.
12.
The binding protein BiP is an endoplasmic reticulum (ER)-resident member of the HSP70 stress-related protein family, which is essential for the constitutive function of the ER. In addition to responding to a variety of environmental stimuli, plant BiP exhibits a tissue-specific regulation. We have isolated two soybean BiP genomic clones, designated gsBiP6 and gsBiP9, and different extensions of their 5 flanking sequences were fused to -glucuronidase (GUS) reporter gene and introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. Transgenic plants displayed prominent GUS activity in the vascular bundles of roots and shoots as well as in regions of intense cell division, such as procambial region and apical meristems. Promoter deletion analyses identified two cis-regulatory functional domains that are important for the spatially-regulated activation of BiP expression under normal plant development. While an AT-rich enhancer-like sequence, designated cis-acting regulatory domain 1, CRD1 (–358 to –211, on gsBiP6), activated expression of the BiP minimal promoter in all organs analyzed, BiP promoter activity in meristematic tissues and phloem cells required the presence of a second activating domain, CRD2 (–211 to –80). Apparently, the CRD2 sequence also harbors negative cis-acting elements, because removal of this region caused activation of gsBiP6 promoter in parenchymatic xylem rays. These results suggest that the tissue-specific control of BiP gene expression requires a complex integration of multiple cis-acting regulatory elements on the promoter.  相似文献   

13.
    
Proteins that mimic DNA present a surface that is similar in shape and chemical character to the DNA double helix. These DNA mimics bind to DNA-binding proteins, taking the place of DNA. Natural DNA mimics play roles in genetic regulation and defense.  相似文献   

14.
15.
    
  相似文献   

16.
真核生物TATA框的折叠结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
罗红  刘次全 《动物学研究》1998,19(2):131-136
通过对真核生物142个基因的部分启动子序列的折叠模型进行分析研究,结果表明,这些基因的TATA框在折叠结构模型中所表现的茎环结构特征有利于与反式作用因子和RNA聚合酶的识别及其相互作用。  相似文献   

17.
    
Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.  相似文献   

18.
The human sex-determining gene on the Y chromosome, termed SRY, has recently been isolated by positional cloning; compelling evidence now exists equating SRY with the testis-determing factor, TDF. The SRY gene product is an HMG box protein whose DNA-binding activity is vital for testis formation as sex-reversed patients with SRY mutations lack this activity in vitro. The in vivo DNA target for SRY, however, remains elusive. Here, we show, by gel retardation analysis, that SRY recognises specific DNA sequences and that such sequences exist upstream of the AMH promoter, a potential downstream target for SRY. We also describe the DNA bending and cruciform DNA-binding functions of SRY and propose a model for the potential action of SRY in the “HMG-1-rich” mammalian nucleus. © 1994 Wiley-Liss, Inc.  相似文献   

19.
通过遗传工程技术获得的转基因动植物对分析某些生化过程和发育途径极为有用。通过化学诱导剂作用于启动子的条件性基因表达是分子生物学和生物技术应用研究中的强有力的手段。建立于目标基因激活和失活基础之上的几个化学分子诱导基因表达系统已有报道。将来自于原核生物、昆虫和其它动物的调节因子应用于新的物种有利于促进转基因技术的应用和有关基因的时空表达研究。本文综述了有关的基因表达调节系统 ,启动子激活的基因表达系统 ,启动子失活的基因表达系统 ,以及可诱导的基因过度表达和反义抑制系统  相似文献   

20.
使用重叠和变异的寡核苷酸作为探针,凝胶迁移分析和竞争实验分析了LIM2转录起始位点上游-47至-32的区域,与其高度亲和结合的一个蛋白复合体看来仅仅结合到这个DNA双链区域的“敏感”位点。这个位点的序列由4个G核苷,接着7个其他核苷酸(AACCTAA)及连着另外4个G核苷组成,即GGGGAACCTAAGGGG; 我们称其为Hsu元件。使用含有这个元件或相应的变异元件所构建的LIM2基因启动子CAT质粒的活性分析表明Hsu元件是位于LIM2基因启动子之内,它是LIM2基因表达所必须的。结合到Hsu元件的反式因子存于晶体发育期间,看来是晶体特异性的。由于LIM2基因启动子并不包含一个经典的TATA盒,这个Hsu元件可能充当RNA复制酶复合体结合的位点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号