首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel highly sensitive ion-pairing reversed-phase high performance liquid-chromatography/electrochemical detection method for simultaneous determination of l-ascorbic acid, aminothiols, and methionine in biological matrices was developed, optimized, and validated. Reduced forms of the analytes were extracted from the sample matrices with 10% meta-phosphoric acid solution((aqueous)). To determine the total vitamin C, the total aminothiols, and the total methionine, samples were treated with tris(2-carboxyethyl)phosphine solution in 0.05% trifluoroacetic acid solution((aqueous)) subsequent to deproteination to reduce the oxidized forms of these compounds. Various analytes were separated on a C(18) (250 × 4.6 mm, 5 μm) analytical column using methanol-0.05% trifluoroacetic acid solution((aqueous)) (05/95, v/v), containing 0.1mM 1-octane sulphonic acid as the ion-pairing agent) as the isocratic mobile phase pumped at a flow rate of 1.5 mL min(-1) at room temperature. The column eluents were monitored at a voltage of 0.85 V. These analytes were efficiently resolved in less than 20 min using n-acetyl cysteine as the internal standard. The present method was specific for the analysis of these analytes and demonstrated acceptable values for linearity (r(2)>0.999 in the range of 0.2-10,000 ng mL(-1) for all the analytes), recovery (>96%), precision (%RSD ≤ 2.0), and sensitivity (on column limit of detection: 250-400 fg and limit of quantification: 0.8-1.25 pg), indicating that the proposed method could be efficiently used for determination of these analytes in the context of clinical research.  相似文献   

2.
Studies investigating the relationship between CYP2C19 genotype and the stereoselective metabolism of omeprazole have not been reported. In the present study, we developed a simple and sensitive analytical method based on column switching reversed phase high-performance liquid chromatography (HPLC) with UV detection to determine the concentrations of (R)- and (S)-omeprazole and of its principal metabolites, (R)- and (S)-5-hydroxyomeprazole, and the non-chiral, omeprazole sulfone, in human plasma. Sample preparation involved liquid-liquid extraction with diethyl ether:dichloromethane (60:40, v/v) followed by clean-up on a TSK BSA-ODS/S column (5 μm, 10 mm × 4.6mm i.d.) using phosphate buffer:acetonitrile (97:3, v/v, pH 6.4). After column switching, separation was performed on a Shiseido CD-ph chiral column (5 μm, 150 mm × 4.6mm i.d.) using phosphate buffer:methanol (45:55, v/v, pH 5.0) as mobile phase. The limit of quantitation (LOQ) was 5 ng/mL for all analytes with intra- and inter-day precisions (as coefficient of variation) of <9.5% and <9.6%, respectively for all analytes. The present method was successfully applied to a chiral pharmacokinetic study of omeprazole in human volunteers with different CYP2C19 genotypes. The results show that the formation of (R)-5-hydroxyomeprazole gives the best correlation with CYP2C19 genotype.  相似文献   

3.
A robust and sensitive method using liquid chromatography-tandem mass spectrometry was developed and validated for the simultaneous determination of a novel topoisomerase 1 inhibitor CH0793076 (3076), the prodrug CH4556300 (TP300), and the active metabolite CH0793011 (3011) in human plasma. All plasma analyzed with this method was acidified with 1M HCl and 46% citric acid solution in a ratio of 100:10:1 (v:v:v) to avoid the pH-based degradation of TP300 and to shift the equilibria of 3076 and 3011 between the lactone and carboxylate forms towards the lactone forms. After the plasma proteins were precipitated with methanol:acetonitrile:HCl 1M (50:50:1, v:v:v) containing stable isotopic internal standards, the analytes were trapped on an Xterra MS C18 column (10×2.1 mm i.d., 5 μm) and separated on a Gemini C18 column (50×2.0 mm i.d., 5 μm) using column-switching liquid chromatography. Electrospray ionization in the positive-ion mode and multiple reaction monitoring were used to quantify the analytes with transitions m/z 587.2>441.2 for TP300, 459.1>415.2 for 3076, and 475.1>361.1 for 3011. The inter- and intra-day precisions were below 12%, and the accuracy was between -16% and 16% at the lower limit of quantitation (LLOQ) and between -11% and 14% at the other quality controls. The LLOQs of TP300, 3076, and 3011 were 0.8, 0.04, and 0.04 ng/mL, respectively. The validated method was successfully applied to clinical sample analysis and incurred sample reanalysis was also conducted.  相似文献   

4.
A simple, rapid and validated high performance liquid chromatography method with UV detection for the quantification of an opioid agonist, fentanyl (FEN), in rat plasma was developed. The assay procedure involved chromatographic separation using a ZIC-HILIC SeQUANT column (250 mm × 4.6 mm, i.d., 5 μm) and a mobile phase of acetonitrile and acetate buffer (pH 3.4, 20mM) of ratio (=65:35, v/v) at a flow rate of 1.2 mL/min and detection wavelength of 201 nm. Plasma sample (100 μL) pretreatment was based on simple deprotienization by acetonitrile spiked with clonidine as an internal standard (I.S.) of 20 ng/mL followed by extraction with tert-butyl methyl ether and centrifugation. The organic layer was evaporated under N(2) gas and reconstituted with 100 μL of acetate buffer (pH 3.4, 20mM), and 50-μL portions of reconstituted sample were injected onto the column. Sample analysis including sample pretreatment was achieved within 35 min. Calibration curve was linear (r ≥ 0.998) from 5 to 100 ng/mL. Both intra- and inter-day assay precisions that are presented through RSD were lower than 12.6% for intra-day and lower than 12.0% for inter-day assessment. Limit of detection was 0.8 ng/mL at S/N of 3. This method was omitting the use of expensive solid phase extraction and time consuming liquid extraction procedures. Moreover, the present method was successfully applied to study pharmacokinetic parameters of FEN after intraperitoneal administration to male Wistar rat. Pharmacokinetic parameters estimated by using moment analysis were T(1/2) 198.3 ± 44.7 min, T(max) 28.3 ± 2.9 min and AUC(0-180) 15.6 ± 2.9(× 10(2))ngmin/mL.  相似文献   

5.
6.
A rapid and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma has been developed and validated. Following liquid-liquid extraction, the analytes were separated on a reversed-phase C(18) column (150 mm × 2.0 mm, 3 μm) using formic acid:10 mM ammonium acetate:methanol (0.2:62:38, v/v/v) as mobile phase at a flow rate of 0.2 mL/min and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode. The method was linear for all analytes over the following concentration (ng/mL) ranges: codeine 0.08-16; ephedrine 0.8-160; guaiphenesin 80-16,000; chlorpheniramine 0.2-40. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. It is the first time that the validated HPLC-MS/MS method was successfully applied to a bioequivalence study in 6 healthy beagle dogs.  相似文献   

7.
The purpose of this study was develop and validate a sensitive and specific enantioselective liquid-chromatography/tandem mass spectrometry (LC-MS/MS) method, for the simultaneous quantification of eslicarbazepine acetate (ESL), eslicarbazepine (S-Lic), oxcarbazepine (OXC) and R-licarbazepine (R-Lic) in human plasma. Analytes were extracted from human plasma using solid phase extraction and the chromatographic separation was achieved using a mobile phase of 80% n-hexane and 20% ethanol/isopropyl alcohol (66.7/33.3, v/v). A Daicel CHIRALCEL OD-H column (5 μm, 50 mm × 4.6 mm) was used with a flow rate of 0.8 mL/min, and a run time of 8 min. ESL, S-Lic, R-Lic, OXC and the internal standard, 10,11-dihydrocarbamazepine, were quantified by positive ion electrospray ionization mass spectrometry. The method was fully validated, demonstrating acceptable accuracy, precision, linearity, and specificity in accordance with FDA regulations for the validation of bioanalytical methods. Linearity was proven over the range of 50.0-1000.0 ng/mL for ESL and OXC and over the range of 50.0-25,000.0 ng/mL for S-Lic and R-Lic. The intra- and inter-day coefficient of variation in plasma was less than 9.7% for ESL, 6.0% for OXC, 7.7% for S-Lic and less than 12.6% for R-Lic. The accuracy was between 98.7% and 107.2% for all the compounds quantified. The lower limit of quantification (LLOQ) was 50.0ng/mL for ESL, S-Lic, OXC and R-Lic in human plasma. The short-term stability in plasma, freeze-thaw stability in plasma, frozen long-term stability in plasma, autosampler stability and stock solution stability all met acceptance criteria. The human plasma samples, collected from 8 volunteers, showed that this method can be used for therapeutic monitoring of ESL and its metabolites in humans treated with ESL.  相似文献   

8.
We developed and validated a quantitative method for simultaneously determining the concentrations of tracheloside and trachelogenin in rat plasma. Plasma samples were prepared by liquid-liquid extraction with ethyl acetate. Isocratic chromatographic separation was performed on a reversed-phase Diamonsil C(18) column (4.6×200 mm, 5 μm). The mobile phase consisted of methanol and 10mM aqueous ammonium formate (80:20, v/v). Analyte detection was achieved by positive electrospray ionization (ESI) tandem mass spectrometry. Calibration was performed by internal standardization with glipizide, and regression curves ranging from 0.625 to 625 ng/mL were constructed for both the analytes. The intra- and inter-day precision values were below 8%, and accuracy ranged from -5.33% to 2.53% in all quality control samples. In this study, the validated method was successfully applied to determine the pharmacokinetic profile of tracheloside and trachelogenin in rat plasma after oral and intravenous administration of trachelospermi total lignans.  相似文献   

9.
A sensitive and rapid LC-MS/MS method was developed and validated for the determination of levamisole in human plasma. The assay was based on liquid-liquid extraction of analytes from human plasma with ethyl ether. Chromatographic separation was carried on an Agilent HC-C(8) column (150 mm × 4.6 mm, 5 μm) at 40°C, with a mobile phase consisting of acetonitrile-10 mM ammonium acetate (70:30, v/v), a flow rate of 0.5 mL/min and a total run time of 6 min. Detection and quantification were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 205.1→178.2 for levamisole, and m/z 296.1→264.1 for mebendazole (internal standard). The assay was linear over a concentration range of 0.1-30 ng/mL with a lower limit of quantification of 0.1 ng/mL. The coefficient of variation of the assay precision was less than 8.5%. The assay was successfully used to analyze human plasma samples in a pharmacokinetic study where levamisole was administered as a liniment.  相似文献   

10.
A sensitive, simple and rapid ultra fast liquid chromatography (UFLC)-ESI-MS/MS method was established for the simultaneous determination of 3,3',4',5,7-pentamethylquercetin (PMQ) and its possible metabolite 3,3',4',7-tetramethylquercetin (TMQ) in dog plasma using 4',5,7-trimethylapigenin (TMA) as the internal standard. The plasma sample was pretreated with acetonitrile for protein precipitation and the analytes were separated on an Ultimate XB-CN column (5 μm, 2.1 mm × 150 mm) with the mobile phase consisting of acetonitrile and water (2:1, v/v). Detection was performed on a triple-quadrupole tandem mass spectrometer under a positive multiple reaction-monitoring mode (MRM). The mass transition ion-pair was followed as m/z 373.1-312.1 for PMQ, 359.1-344.0 for TMQ and 313.1-298.1 for TMA. The validated concentration ranged from 1.272 to 3060 ng/mL for PMQ and from 10.35 to 1725 ng/mL for TMQ. The lower limit of quantifications for PMQ and TMQ were 1.272 ng/mL and 10.35 ng/mL, respectively. The developed-method was successfully applied for the pharmacokinetic study of PMQ and its metabolite TMQ in dogs following a single oral dose.  相似文献   

11.
A simple, accurate and precise high-performance liquid chromatographic method with fluorescence detection was developed and validated for the determination of gemifloxacin (GEM) in rat plasma using furosemide as internal standard (I.S.). Plasma samples were pretreated by direct deproteinization and all samples and standard solutions were chromatographed at 45°C using triethylamine solution (0.5%, v/v, pH 3.0±0.1), methanol and acetonitrile (63:30:7, v/v/v) as the mobile phase. Chromatographic resolution was achieved using a RP-C(18) column (Atlantis, Waters, 150 mm × 4.6 mm, 5 μm) at a flow rate of 1.0 mL min(-1) and an injection volume of 30 μL. The analytes were measured by fluorescence detection with excitation and emission wavelengths of 344 nm and 399 nm, respectively. The retention times for GEM and I.S. were approximately 7.5 and 12.6 min, respectively. The lower limit of quantitation (LLOQ) was 20 ng mL(-1) and the calibration curves were linear over a concentration range of 20-5000 ng mL(-1). The intra- and inter-day precisions, expressed by relative standard deviation (R.S.D.) were lower than 6.24% and 4.49%, respectively. The accuracy ranged from 91.3% to 112% and from 98.8% to 106% for the lower and upper limit of quantitation of the calibration curve, respectively. Ratio of peak area of analyte to I.S. was used for quantification of plasma samples. No interferences from endogenous substances were found. The recovery of GEM and I.S. from plasma was greater than 90%. Drug stability in plasma was shown at room temperature for 4h, after three freeze-thaw cycles for 24h, in freezer at -80°C for 60 days, and in the autosampler after processing for 12h. The utility of the assay was confirmed by the successful analysis of plasma samples from GEM pharmacokinetics studies in the rats after intravenous administration.  相似文献   

12.
A rapid, specific, and reliable LC-MS/MS based bioanalytical method was developed and validated for the simultaneous determination of naloxone (NLX) and its two metabolites, 6β-naloxol (NLL) and naloxone-3β-D-glucuronide (NLG) in mouse plasma. The optimal chromatographic behavior of these analytes was achieved on an Aquasil C18 column (50 mm × 2.1 mm, 5 μm) using reversed phase chromatography. The total LC analysis time per injection was 2.5 min with a flow rate of 1.0 mL/min with gradient elution. Sample preparation via protein precipitation with acetonitrile in a 96-well format was applied for analyses of these analytes. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring (MRM) mode. Modification of collision energy besides chromatographic separation was applied to further eliminate interference peaks for NLL and NLG. The method validation was conducted over the curve range of 0.200/0.400/0.500 to 100/200/250 ng/mL for NLX/NLL/NLG, respectively, using 0.0250 mL of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed ≤ 6.5% relative standard deviation (RSD) and -8.3 to -2.5% relative error (RE). The method was successfully applied to determine the concentrations of NLX, NLL, and NLG in incurred mouse plasma samples.  相似文献   

13.
A new simple method was developed for the quantitative determination of the docetaxel (Taxotere) vehicle, polysorbate 80 (Tween 80), in human plasma. Calibration curves were constructed in the range of 1-100 microg/ml, using paclitaxel (0.01 mM) as internal standard, and were analyzed using a power fit with equal weighting. Sample pretreatment involved a one-step extraction with acetonitrile-n-butyl chloride (1:4, v/v). The analytes were separated on a Waters X-Terra MS column (50x2.1 mm I.D.) packed with 3.5-microm ODS material, and eluted with methanol-water (9:1, v/v) containing 0.1% formic acid. The column effluent was monitored by tandem mass spectrometry with electrospray ionization. The overall extraction efficiency was 50-60%, with values for precision and accuracy of < or =16% and <15% relative error, respectively. Our current method is approximately 60-100-fold more sensitive than previous assays, and will be used to define Tween 80 disposition in patients receiving Taxotere.  相似文献   

14.
A new sensitive and specific method using liquid chromatography/tandem mass spectrometry for determination of bryostatin 1 was developed and validated. Sample pretreatment involved a double liquid-liquid extraction step with a mixture of acetonitrile/n-butyl chloride (1/4, v/v). Separation of the compound of interest, including the internal standard paclitaxel, was achieved on a Waters X-Terra C18 (50 x 2.1 mm i.d., 3.5 microm) analytical column with acetonitrile/water mobile phase (80:20, v/v) containing 0.1% formic acid using isocratic flow at 0.15 mL/min for 13 min. The analytes of interest were monitored by tandem mass spectrometry with electrospray positive ionization. The linear calibration curves were generated over the range of 50-2000 pg/mL with values for the coefficient of determination of >0.99. The values for both within-day and between-day precision and accuracy were <15%. This method was used to characterize the plasma pharmacokinetics of bryostatin 1 at doses of 20 microg/m2) to optimize treatment with this agent.  相似文献   

15.
Tamoxifen is the agent of choice for the treatment of estrogen receptor-positive breast cancer. Tamoxifen is a substrate of P-glycoprotein (P-gp) and microsomal cytochrome P450 (CYP) 3A, and biochanin A (BCA) is an inhibitor of P-gp and CYP3A. Hence, it could be expected that BCA would affect the pharmacokinetics of tamoxifen. In the present study we have developed and validated a simple, sensitive and specific LC-ESI-MS/MS method for the simultaneous quantification of tamoxifen and its metabolite 4-hydroxytamoxifen with 100 μL rat plasma using centchroman as an internal standard (IS). Tamoxifen, 4-hydroxytamoxifen and IS were separated on a Supelco Discovery C18 (4.6 mm × 50 mm, 5.0 μm) column under isocratic condition using 0.0 1M ammonium acetate (pH 4.5):acetonitrile (10:90, v/v) as a mobile phase. The mobile phase was delivered at a flow rate of 0.8 mL/min. The method was proved to be accurate and precise at linearity range of 0.78-200 ng/mL with a correlation coefficient (r) of ≥ 0.996. The intra- and inter-day assay precision ranged from 1.89 to 8.54% and 3.97 to 10.26%, respectively; and intra- and inter-day assay accuracy was between 87.63 and 109.06% and 96 and 103.89%, respectively for both the analytes. The method was successfully applied to study the effect of oral co-administration of BCA (an isoflavone) on the pharmacokinetics of tamoxifen and 4-hydroxytamoxifen in female rats. The coadministration of BCA caused no significant changes in the pharmacokinetics of tamoxifen and 4-hydroxytamoxifen. However, the peak plasma concentration (C(max)) of 4-hydroxytamoxifen in BCA pretreated rats was significantly (P<0.05) lower than those from control group.  相似文献   

16.
We developed a simple and sensitive method for the simultaneous detection of imatinib mesylate (IM) and its active metabolite, N-desmethyl imatinib (M1), in human serum samples. Separation was successfully achieved using an Agilent(?) ZORBAX Eclipse plus C(18) reversed phase column (50 mm × 2.1 mm, i.d.; 1.8 μm) under isocratic mobile phase conditions consisting of acetonitrile: 0.02 M potassium dihydrogen phosphate with 0.2% triethylamine at pH 3 (25:75, v/v) and ultra-violet detection was achieved at 235 nm. Extraction of the target compounds was completed using 100% cold acetonitrile. Good linearities (r(2)>0.99) for both IM and M1 were achieved for the concentration ranges of 50-1800 ng/mL and 50-360 ng/mL, respectively. The detection limits were 20 ng/mL and 10 ng/mL for M1 and IM, respectively. The intra- and inter-day precisions were less than 1% with percent recoveries of more than 90%. The method was successfully applied to calculate the pharmacokinetic parameters of chronic myeloid leukemia patients receiving imatinib. The method is suitable to be routinely applied for determination of IM and M1 in serum.  相似文献   

17.
A novel, simple and fast reversed-phase HPLC/UV method was developed, optimized for various chromatographic conditions, and validated according to international guidelines for simultaneous determination of all-trans-retinol and α-tocopherol in human serum using retinyl acetate as internal standard in the concentration of 0.5 μg/ml. A liquid-phase extraction was applied to the 250 μl of serum with n-hexane–dichloromethane mixture (70:30, v/v), in two steps, using ethanol–methanol mixture (95:5, v/v) for protein precipitation and BHT (butylated hydroxy toluene) as stabilizer for sample preparation. Both analytes were analyzed on Kromasil 100 C18 column (150 mm × 4.6 mm, 5 μm), Brownlee analytical (Perkin Elmer) C18 column (150 mm × 4.6 mm, 5 μm), and Supelco (Supelcosil) LC-18 column (150 mm × 3 mm, 3 μm), protected by a Perkin Elmer C18 (30 mm × 4.6 mm, 10 μm; Norwalk, USA) pre-column guard cartridge, at 292 nm wavelength, using methanol–water (99:1, v/v), in isocratic mode as mobile phase applied at flow rate of 1.5 ml/min and 1 ml/min for both 5 μm and 3 μm columns, respectively. Complete separation of all the analytes was achieved in 3 and 6 min on 3 μm and 5 μm columns, respectively by injecting 20 μl of sample into the HPLC system by autosampler, keeping column oven temperature at 25 °C. Different particulate reversed-phase chromatographic columns were evaluated in order to select the best column in terms of sensitivity, selectivity, resolution and short run time of both the analytes and it was concluded that 3 μm columns are better to be used in clinical set up as well as in laboratories for the separation of these analytes in a shorter time as compared with 5 μm columns. The method was validated and applied for the analysis of all-trans-retinol and α-tocopherol in the serum of human volunteers.  相似文献   

18.
采用RP-HPLC法建立了同时测定珠芽蓼中牡荆素、槲皮苷、槲皮素三种黄酮的方法,色谱柱为kromasilC18(250 mm×4.6 mm,5μm),以甲醇-水(含0.25%磷酸)为流动相梯度洗脱,流速1 mL/min,检测波长360 nm。结果表明,牡荆素、槲皮苷和槲皮素质量浓度在8~40、5~50μg/mL和5.33~52μg/mL范围内与色谱峰面积均呈良好的线形关系,平均回收率分别为100.3%、98.9%和100.4%,日内稳定性偏差分别为0.78%,0.51%和0.38%,日间稳定性偏差为2.6%,1.9%和2.1%。该方法简单、准确,可为珠芽蓼的质量控制提供科学依据。  相似文献   

19.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated to determine HS270, a new histone deacetylase (HDAC) inhibitor, in rat plasma using SAHA as the internal standard (IS). After a single step liquid-liquid extraction with acetoacetate, analytes were subjected to LC-MS/MS analysis using positive electro-spray ionization (ESI(+)) under selected reaction monitoring mode (SRM). The chromatographic separation was achieved on a Hypurity C(18) column (50 mm × 2.1 mm, i.d., 5 μm). The MS/MS detection was conducted by monitoring the fragmentation of m/z 392.3→100.1 for HS270, m/z 265.1→232.1 for IS. The method had a chromatographic running time of 2.5 min and linear calibration curves over the concentrations of 0.5-1000 ng/mL. The recovery of the method was 70.8-82.5% and the lower limit of quanti?cation (LLOQ) was 0.5 ng/mL. The intra- and inter-batch precisions were less than 15% for all quality control samples at concentrations of 1.0, 100.0, and 750.0 ng/mL. The validated LC-MS/MS method has successfully applied to a HS270 pharmacokinetic study after oral doses of 25, 50, 100, 200 mg/kg, and i.v. dose of 5 mg/kg to rats.  相似文献   

20.
A rapid and valid method was developed for simultaneous determination catechin, epicatechin and epicatechin gallate in rat plasmas using scopoletin (103 ng mL(-1)) as an internal standard (IS). The separation was performed on Eclipse plus C18 column (100 mm × 4.6 mm, 1.8 μm) at a flow rate of 0.3 mL min(-1), and acetonitrile-0.1% formic acid was used as mobile phase. The recoveries of three analytes and IS were more than 78.9%. The lower limits of quantitation (LLOQ) in rat plasma were 2.14, 2.38 and 2.08 ng mL(-1) respectively for catechin, epicatechin and epicatechin gallate. Intra-day and inter-day precisions were within 12%. The accuracies were more than 85%. After single oral administration of 15.25 g kg(-1) Cynomorium songaricum extract, C(max) of catechin, epicatechin and epicatechin gallate in rat plasma were respectively 86.69±38.65, 32.57±15.00 and 36.93±12.62 ng mL(-1) while T(max) values were respectively 0.15±0.09, 0.20±0.10 and 0.20±0.13 h. The results demonstrated that the present LC-MS/MS method was sensitive enough for pharmacokinetic study of catichins following oral administration of C. songaricum extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号