首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ATP is an extracellular signal for the immune system, particularly during an inflammatory response. It is sensed by the P2X7 receptor, the expression of which is upregulated by pro-inflammatory cytokines. Activation of the P2X7 receptor opens a cation-specific channel that alters the ionic environment of the cell, activating several pathways, including (i) the inflammasome, leading to production of IL-1β and IL-18; (ii) the stress-activated protein kinase pathway, resulting in apoptosis; (iii) the mitogen-activated protein kinase pathway, leading to generation of reactive oxygen and nitrogen intermediates; and (iv) phospholipase D, stimulating phagosome-lysosome fusion. The P2X7 receptor can initiate host mechanisms to remove pathogens, most particularly those that parasitise macrophages. At the same time, the P2X7 receptor may be subverted by pathogens to modulate host responses. Moreover, recent genetic studies have demonstrated significant associations between susceptibility or resistance to parasites and bacteria, and loss-of-function or gain-of-function polymorphisms in the P2X7 receptor, underscoring its importance in infectious disease.  相似文献   

2.
A computational lead-hopping exercise identified compound 4 as a structurally distinct P2X7 receptor antagonist. Structure–activity relationships (SAR) of a series of pyroglutamic acid amide analogues of 4 were investigated and compound 31 was identified as a potent P2X7 antagonist with excellent in vivo activity in animal models of pain, and a profile suitable for progression to clinical studies.  相似文献   

3.
Two distinct families of small molecules were discovered as novel α7 nicotinic acetylcholine receptor (nAChR) antagonists by pharmacophore-based virtual screening. These novel antagonists exhibited selectivity for the neuronal α7 subtype over other nAChRs and good brain penetration. Neuroprotection was demonstrated by representative compounds 7i and 8 in a mouse seizure-like behavior model induced by the nerve agent diisopropylfluorophosphate (DFP). These novel nAChR antagonists have potential use as antidote for organophosphorus nerve agent intoxication.  相似文献   

4.
To identify new cost-effective prostaglandin D? (DP) receptor antagonists, a series of novel 3-benzoylaminophenylacetic acids were synthesized and biologically evaluated. Among those tested, some representative compounds were found to be orally available. Receptor selectivity and rat PK profiles were also evaluated. The structure-activity relationship (SAR) study is presented.  相似文献   

5.
Protection of the heart from ischemia-reperfusion injury can be achieved by ischemic preconditioning and ischemic postconditioning. Previous studies revealed that a complex of pannexin-1 with the P2X(7) receptor forms a channel during ischemic preconditioning and ischemic postconditioning that results in the release of endogenous cardioprotectants. ATP binds to P2X(7) receptors, inducing the formation of a channel in association with pannexin-1. We hypothesized that this channel would provide a pathway for the release of these same cardioprotectants. Preconditioning-isolated perfused rat hearts with 0.4 μM ATP preceding 40 min of ischemia minimized infarct size upon subsequent reperfusion (5% of risk area) and resulted in >80% recovery of left ventricular developed pressure. Postconditioning with ATP after ischemia during reperfusion was also protective (6% infarct and 72% recovery of left ventricular developed pressure). Antagonists of both pannexin-1 (carbenoxolone and mefloquine) and P2X(7) receptors (brilliant blue G and A438079) blocked ATP pre- and postconditioning, indicating that ATP protection was elicited via the opening of a pannexin-1/P2X(7) channel. An antagonist of binding of the endogenous cardioprotectant sphingosine 1-phosphate to its G protein-coupled receptor diminished protection by ATP, which is also consistent with an ATP-dependent release of cardioprotectants. Suramin, an antagonist of binding of ATP (and ADP) to P2Y receptors, was without effect on ATP protection. Benzoyl benzoyl-ATP, a more specific P2X(7) agonist, was also a potent pre- and postconditioning agent and sensitive to blockade by pannexin-1/P2X(7) channel antagonists. The data point out for the first time the potential of P2X(7) agonists as cardioprotectants.  相似文献   

6.
Carboxylic acid derivatives of pyridoxal were developed as potent P2X1 and P2X3 receptor antagonists with modifications of a lead compound, pyridoxal-5′-phosphate-6-azophenyl-2′,5′-disulfonate (5b, iso-PPADS). The designing strategies included the modifications of aldehyde, phosphate or sulfonate groups of 5b, which may be interacted with lysine residues of the receptor binding pocket, to weak anionic carboxylic acid groups. The corresponding carboxylic acid analogs of pyridoxal-5′-phosphate (1), 13 and 14, showed parallel antagonistic potencies. Also, most of 6-azophenyl derivatives (24–28) of compound 13 or 14 showed potent antagonistic activities similar to that of 5b at human P2X3 receptors with 100 nM range of IC50 values in two-electrode voltage clamp (TEVC) assay system on the Xenopus oocyte. The results indicated that aldehyde and phosphoric or sulfonic acids in 5b could be changed to a carboxylic acid without affecting antagonistic potency at mouse P2X1 and human P2X3 receptors.  相似文献   

7.
Screening of library compounds has yielded pyrazolodiazepine derivatives with P2X7 receptor antagonist activity. To explore the structure–activity relationships (SAR) of these pyrazolodiazepines as human P2X7 receptor antagonists, derivatives were synthesized by substitutions at positions R2 and R3 of the pyrazolodiazepine skeleton. Using a 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP)-induced fluorescent ethidium uptake assay, the activities of these derivatives were tested in HEK-293 cells stably expressing human P2X7 receptors. Moreover, the effect of these derivatives was assessed by measuring their effect on IL-1β release induced by BzATP-induced activation of differentiated THP-1 cells. A 2-phenethyl pyrazolodiazepine derivative with a 1-methyl-1H-3-indolyl group at position R2 had fivefold greater activity than the derivative with a 5-isoquinolinyl at R2. Moreover, a benzyl moiety at R3 had fivefold greater activity than a bicyclic moiety. The stereochemical effect at C-6 showed a preference for the (R)-isomer. Among the series of active derivatives, compound 23b, with a phenethyl group at R1, a 3-methyl indole at R2, and a benzyl at R3, exhibited activity similar to that of the positive control, KN-62, as shown by the inhibitory effects of IL-1β release.  相似文献   

8.
A series of α,α-cycloalkylglycine sulfonamide compounds of general formula 1 has previously been identified by our group as selective human B(2)(hB(2)) receptor antagonists. Here we report the in vitro and in vivo BK antagonist activity of a further evolution of the series, consisting in compounds of the general formula 2, containing either an alkyl piperazine or a 4-alkyl piperidine ring bearing various positively charged groups (R'). These studies unexpectedly revealed quite a flat nanomolar/subnanomolar SAR for the binding affinity, while differences were seen in the in vitro functional activities. We propose that variations in the residence time may explain these results.  相似文献   

9.
A series of novel 1-aminocyclopentyl-3-carboxyamides incorporating substituted tetrahydropyran moieties have been synthesized and subsequently evaluated for their antagonistic activity against the human CCR2 receptor. Among them analog 59 was found to posses potent antagonistic activity.  相似文献   

10.
Structure–activity relationships (SAR) of analogues of lead compound 1 were investigated and compound 16 was selected for further study in animal models of pain. Compound 16 was shown to be a potent antihyperalgesic agent in both the rat acute complete Freund’s adjuvant (CFA) model of inflammatory pain [Iadarola, M. J.; Douglass, J.; Civelli, O.; Naranjo, J. R. rain Res. 1988, 455, 205] and the knee joint model of chronic inflammatory pain [Wilson, A. W.; Medhurst, S. J.; Dixon, C. I.; Bontoft, N. C.; Winyard, L. A.; Brackenborough, K. T.; De Alba, J.; Clarke, C. J.; Gunthorpe, M. J.; Hicks, G. A.; Bountra, C.; McQueen, D. S.; Chessell, I. P. Eur. J. Pain 2006, 10, 537].  相似文献   

11.
A novel series of quinoxalin-2-carboxamides were designed based on the ligand-based approach, employing a three-point pharmacophore model; it consists of an aromatic residue and a linking carbonyl group and a basic nitrogen. The target new chemical entities were synthesized from the key intermediate, quinoxalin-2-carboxylic acid, by coupling it with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The obtained compounds’ structures were confirmed by spectral data. The target new chemical entities were evaluated for their 5-HT3 receptor antagonisms in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT3 agonist, 2-methyl-5-HT, which was expressed in the form of pA2 value. All the synthesized compounds showed antagonism towards 5-HT3 receptor; based on this result, a structure–activity relationship was derived, which reveals that the aromatic residue in 5-HT3 receptor antagonists may have hydrophobic interaction with 5-HT3 receptor. Regardless of their antagonistic potentials, all the synthesized molecules were screened for their anti-depressant potentials by using forced swim test in mice model; interestingly none of the tested compounds affect the locomotion of mice in the tested dose levels. Compounds with significant pA2 values exhibited good anti-depressant-like activity as compared to the vehicle-treated group.  相似文献   

12.
Aminobenzyloxyarylamide derivatives 1a-i and 2a-t were designed and synthesized as novel selective κ opioid receptor (KOR) antagonists. The benzoyl amide moiety of LY2456302 was changed into N-hydroxybenzamide and benzisoxazole-3(2H)-one to investigate whether it could increase the binding affinity or selectivity for KOR. All target compounds were evaluated in radioligand binding assays for opioid receptor binding affinity. These efforts led to the identification of compound 1c (κ Ki = 179.9 nM), which exhibited high affinity for KOR. Moreover, the selectivity of KOR over MOR and DOR increased nearly 2-fold and 7-fold, respectively, compared with (±)LY2456302.  相似文献   

13.
High affinity and selective small molecule agonists of the S1P(4) receptor (S1P(4)-R) may have significant therapeutic utility in diverse disease areas including autoimmune diseases, viral infections and thrombocytopenia. A high-throughput screening (HTS) of the Molecular Libraries-Small Molecule Repository library identified 3-(2-(2,4-dichlorophenoxy)ethoxy)-6-methyl-2-nitropyridine as a moderately potent and selective S1P(4)-R hit agonist. Design, synthesis and systematic structure-activity relationships study of the HTS-derived hit led to the development of novel potent S1P(4)-R agonists exquisitely selective over the remaining S1P(1-3,5)-Rs family members. Remarkably, the molecules herein reported provide novel pharmacological tools to decipher the biological function and assess the therapeutic utility of the S1P(4)-R.  相似文献   

14.
Herein we describe the design, synthesis, and structure–activity relationships (SARs) of a novel phenylcyclopropane series represented by 7 and 33b as antagonists of orexin 1 and orexin 2 receptors. With 4 serving as the initial lead for the development of orexin antagonists, exploration of SAR resulted in improved binding affinity for orexin 1 and orexin 2 receptors. Among the synthesized compounds, 33b ((−)-N-(5-cyanopyridin-2-yl)-2-[(3,4-dimethoxyphenyl)oxymethyl]-2-phenylcyclopropanecarboxamide) exhibited potent in vitro activity and oral efficacy in animal sleep measurement experiments. The results of our study suggest that compound 33b may serve as a valuable template for the development of new orexin receptor antagonists.  相似文献   

15.

Transgenic and knockout animal models are widely used to investigate the role of receptors, signaling pathways, and other peptides and proteins. Varying results are often published on the same model from different groups, and much effort has been put into understanding the underlying causes of these sometimes conflicting results. Recently, it has been shown that a P2X4R knockout model carries a so-called passenger mutation in the P2X7R gene, potentially affecting the interpretation of results from studies using this animal model. We therefore report this case to raise awareness about the potential pitfalls using genetically modified animal models, especially within P2 receptor research. Although purinergic signaling has been recognized as an important contributor to the regulation of bone remodeling, the process that maintains the bone quality during life, little is known about the role of the P2X4 receptor (P2X4R) in regulation of bone remodeling in health and disease. To address this, we analyzed the bone phenotype of P2rx4tm1Rass (C57BL/6J) knockout mice and corresponding wildtype using microCT and biomechanical testing. Overall, we found that the P2X4R knockout mice displayed improved bone microstructure and stronger bones in an age- and gender-dependent manner. While cortical BMD, trabecular BMD, and bone volume were higher in the 6-month-old females and 3-month-old males, this was not the case for the 3-month-old females and the 6-month-old males. Bone strength was only affected in the females. Moreover, we found that P2X4R KO mice carried the P2X7 receptor 451P wildtype allele, whereas the wildtype mice carried the 451L mutant allele. In conclusion, this study suggests that P2X4R could play a role in bone remodeling, but more importantly, it underlines the potential pitfalls when using knockout models and highlights the importance of interpreting results with great caution. Further studies are needed to verify any specific effects of P2X4R on bone metabolism.

  相似文献   

16.
Dihydrofuran-2-one and dihydropyrrol-2-one derivatives were identified as novel, potent and selective mineralocorticoid receptor (MR) antagonists by the structure-based drug design approach utilizing the crystal structure of MR/compound complex. Introduction of lipophilic substituents directed toward the unfilled spaces of the MR and identification of a new scaffold, dihydropyrrol-2-one ring, led to potent in vitro activity. Among the synthesized compounds, dihydropyrrol-2-one 11i showed an excellent in vitro activity (MR binding IC50 = 43 nM) and high selectivity over closely related steroid receptors such as the androgen receptor (AR), progesterone receptor (PR) and glucocorticoid receptor (GR) (>200-fold for AR and PR, 100-fold for GR).  相似文献   

17.
The 5-hydroxytryptamine (5-HT)(7(a)) receptor is a G-protein-coupled receptor critically involved in human psychiatric and neurological disorders. In the present study, we evaluate the presence and the functional role of N-glycosylation of the human 5-HT(7) receptor. Western blot analysis of HEK293T cells transiently expressing the 5-HT(7(a)) receptor in the presence of tunicamycin gave rise to a band shift, indicating the existence of an N-glycosylated form of the 5-HT(7(a)) receptor. To further investigate this, we mutated the two predicted N-glycosylation sites (N5Q and N66Q) and compared the molecular mass of the immunoreactive bands with those of the wild-type receptor, indicating that both asparagines were N-glycosylated. The mutant receptors had the same binding affinity for [(3) H]5-CT and the same potency and efficacy with regard to 5-HT-induced activation of adenylyl cyclase. However, there was a reduction in maximal ligand binding for the single and double mutants compared to the wild-type receptor. Next, membrane labelling and immunocytochemical studies demonstrated that the N-glycosylation mutants were expressed at the cell surface. We conclude that N-glycosylation is not important for cell surface expression of the 5-HT(7) receptor.  相似文献   

18.
Previous studies have shown that compound 1 displayed high affinity towards histamine H3 receptor (H3R), (human (h-H3R), Ki = 8.6 nM, rhesus monkey (rh-H3R), Ki = 1.2 nM, and rat (r-H3R), Ki = 16.5 nM), but exhibited high affinity for hERG channel. Herein, we report the discovery of a novel, potent, and highly selective H3R antagonist/inverse agonist 5a(SS) (SAR110068) with acceptable hERG channel selectivity and desirable pharmacological and pharmacokinetic properties through lead optimization sequence. The significant awakening effects of 5a(SS) on sleep–wake cycles studied by using EEG recording in rats during their light phase support its potential therapeutic utility in human sleep–wake disorders.  相似文献   

19.
A virtual screening approach using various in silico methodologies led to the discovery of 2-(m-tolylamino)-7,8-dihydroquinazolin-5(6H)-one (1) as a moderately active negative allosteric modulator (NAM) of the metabotropic glutamate receptor subtype 5 (mGluR5) showing high selectivity against the subtype mGluR1. Modifications of the parent compound by rational design yielded a series of highly potent derivatives which will serve as valuable starting points for further hit-to-lead optimization efforts toward a suitable drug candidate for the treatment of l-DOPA induced dyskinesia.  相似文献   

20.
A series of α-amidosulfones were found to be potent and selective agonists of CB2. The discovery, synthesis, and structure–activity relationships of this series of agonists are reported. In addition, the pharmacokinetic properties of the most promising compounds are profiled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号