首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue factor is the cell membrane-anchored cofactor for factor VIIa and triggers the coagulation reactions. The initial step is the conversion of factor VII to factor VIIa which, in vitro, is efficiently catalyzed by low concentrations of factor Xa. To identify the tissue factor region that interacts with the activator factor Xa during this process, we evaluated a panel of soluble tissue factor (1-219) mutants for their ability to support factor Xa-mediated activation of factor VII. The tissue factor residues identified as most important for this interaction (Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, and Tyr185) were identical to those found to be important for the interaction of substrate factor X with the tissue factor.factor VIIa complex. The residues form a continuous surface-exposed patch with an area of about 500 A(2), which appears to be located outside the tissue factor-factor VII contact zone. In agreement, the two monoclonal antibodies 5G6 and D3H44-F(ab')(2), whose epitopes overlap with this identified region, inhibited the rates of factor VII activation by 86% and 95%, respectively. These antibodies also strongly inhibited the conversion of (125)I-labeled factor VII when cell membrane-expressed, full-length tissue factor (1-263) was employed. Together the results suggest the usage of a common surface region of tissue factor in its dual role-as a cofactor for factor Xa-mediated factor VII activation and as a cofactor for factor VIIa-mediated factor X activation. The finding that factor Xa and factor X may engage in similar, if not identical, molecular interactions with tissue factor further indicates that factor Xa and factor X are similarly oriented toward their respective interaction partners in the ternary catalytic complexes.  相似文献   

2.
We have studied the binding of radioiodinated human factor VII and its activated form, factor VIIa, to monolayers of a human bladder carcinoma cell line (J82) that expresses functional cell surface tissue factor. The binding of factors VII and VIIa to these cells was found to be time-, temperature-, and calcium-dependent. In addition, the binding of each protein to J82 cells was specific, dose-dependent, and saturable. The binding isotherms for factors VII and VIIa were hyperbolic, and Scatchard plots of the binding data obtained at 37 degrees C indicated a single class of binding sites for each protein with Kd values of 3.20 +/- 0.51 and 3.25 +/- 0.31 nM, respectively. Factors VII and VIIa, respectively, interacted with 256,000 +/- 39,000 and 320,000 +/- 31,000 binding sites/cell. Competition experiments suggested a common receptor for factors VII and VIIa. Binding of factor VIIa to the cells was completely blocked by preincubation of the cells with polyclonal anti-tissue factor IgG, whereas binding of factor VII was inhibited approximately 90%, suggesting the presence of a small number of tissue factor-independent binding sites specific for factor VII on this cell. Functional studies revealed that factor X activation by increasing amounts of cell-bound factor VII or VIIa was hyperbolic in nature. Half-maximal rates of factor Xa formation occurred at factor VII and VIIa concentrations of 3.7 +/- 0.47 and 3.2 +/- 0.31 nM, respectively. No factor VII- or VIIa-mediated activation of factor X was observed when cells were preincubated with anti-tissue factor IgG. Two-chain 125I-factor VIIa recovered from the cells was identical to the offered ligand as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. In contrast, the offered single-chain 125I-factor VII was progressively converted to two-chain 125I-factor VIIa upon binding to the cells. When the J82 cells were pretreated with anti-tissue factor IgG, both factor VII recovered from the cells and factor VII in the supernatant were in the single-chain form, indicating that cell-surface tissue factor was essential for the activation of factor VII on these cells. These data indicate that binding of factor VII to tissue factor appears to be a prerequisite for its conversion to factor VIIa and the initiation of the extrinsic pathway of coagulation on these cells.  相似文献   

3.
T Nakagaki  D C Foster  K L Berkner  W Kisiel 《Biochemistry》1991,30(45):10819-10824
Previous studies demonstrated proteolytic activation of human blood coagulation factor VII by an unidentified protease following complex formation with tissue factor expressed on the surface of a human bladder carcinoma cell line (J82). In the present study, an active-site mutant human factor VII cDNA (Ser344----Ala) has been constructed, subcloned, and expressed in baby hamster kidney cells. Mutant factor VII was purified to homogeneity in a single step from serum-free culture supernatants by immunoaffinity column chromatography. Mutant factor VII was fully carboxylated, possessed no apparent clotting activity, and was indistinguishable from plasma factor VII by SDS-PAGE. Cell binding studies indicated that mutant factor VII bound to J82 tissue factor with essentially the same affinity as plasma factor VII and was cleaved by factor Xa at the same rate as plasma factor VII. In contrast to radiolabeled single-chain plasma factor VII that was progressively converted to two-chain factor VIIa on J82 monolayers, mutant factor VII was not cleaved following complex formation with J82 tissue factor. Incubation of radiolabeled mutant factor VII with J82 cells in the presence of recombinant factor VIIa resulted in the time-dependent and tissue factor dependent conversion of single-chain mutant factor VII to two-chain mutant factor VIIa. Plasma levels of antithrombin III had no discernible effect on the factor VIIa catalyzed activation of factor VII on J82 cell-surface tissue factor but completely blocked this reaction catalyzed by factor Xa. These results are consistent with an autocatalytic mechanism of factor VII activation following complex formation with cell-surface tissue factor, which may play an important role in the initiation of extrinsic coagulation in normal hemostasis.  相似文献   

4.
Tissue factor, the physiologic trigger of blood clotting, is the membrane-anchored protein cofactor for the plasma serine protease, factor VIIa. Tissue factor is hypothesized to position and align the active site of factor VIIa relative to the membrane surface for optimum proteolytic attack on the scissile bonds of membrane-bound protein substrates such as factor X. We tested this hypothesis by raising the factor VIIa binding site above the membrane surface by creating chimeras containing the tissue factor ectodomain linked to varying portions of the membrane-anchored protein, P-selectin. The tissue factor/P-selectin chimeras bound factor VIIa with high affinity and supported full allosteric activation of factor VIIa toward tripeptidyl-amide substrates. That the active site of factor VIIa was raised above the membrane surface when bound to tissue factor/P-selectin chimeras was confirmed using resonance energy transfer techniques in which appropriate fluorescent dyes were placed in the active site of factor VIIa and at the membrane surface. The chimeras were deficient in supporting factor X activation by factor VIIa due to decreased k(cat). The chimeras were also markedly deficient in clotting plasma, although incubating factor VII or VIIa with the chimeras prior to the addition of plasma restored much of their procoagulant activity. Interestingly, all chimeras fully supported tissue factor-dependent factor VII autoactivation. These studies indicate that proper positioning of the factor VII/VIIa binding site on tissue factor above the membrane surface is important for efficient rates of activation of factor X by this membrane-bound enzyme/cofactor complex.  相似文献   

5.
We recently showed that single-chain zymogen factor VII is converted to two-chain factor VIIa in an autocatalytic manner following complex formation with either cell-surface or solution-phase relipidated tissue factor apoprotein (Nakagaki, T., Foster, D. C., Berkner, K. L., and Kisiel, W. (1991) Biochemistry 30, 10819-10824). We have now performed a detailed kinetic analysis of the autoactivation of human plasma factor VII in the presence of relipidated recombinant tissue factor apoprotein and calcium. Incubation of factor VII with equimolar amounts of relipidated tissue factor apoprotein resulted in the formation of factor VIIa amidolytic activity coincident with the conversion of factor VII to factor VIIa. The time course for the generation of factor VIIa amidolytic activity in this system was sigmoidal, characterized by an initial lag phase followed by a rapid linear phase until activation was complete. The duration of the lag phase was decreased by the addition of exogenous recombinant factor VIIa. Relipidated tissue factor apoprotein was essential for factor VII autoactivation. No factor VII activation was observed following complex formation between factor VII and a recombinant soluble tissue factor apoprotein construct consisting of the aminoterminal extracellular domain in the presence or absence of phospholipids. Kinetic analyses revealed that factor VII activation in the presence of relipidated tissue factor apoprotein can be defined by a second-order reaction mechanism in which factor VII is activated by factor VIIa with an apparent second-order rate constant of 7.2 x 10(3) M-1 S-1. Benzamidine inhibited factor VII autoactivation with an apparent Ki of 1.8 mM, which is identical to the apparent Ki for the inhibition of factor VIIa amidolytic activity by this active site competitive inhibitor. Our data are consistent with a factor VII autoactivation mechanism in which trace amounts of factor VIIa rapidly activate tissue factor-bound factor VII by limited proteolysis.  相似文献   

6.
As an attempt to investigate the dynamic interactions between plasma serine protease, coagulation factor VIIa (VIIa) and its cofactor, tissue factor (TF), we performed normal mode analysis (NMA) of the complex of VIIa with soluble TF (the extracellular part of TF; sTF). We compared fluctuations of Calpha atoms of VIIa or sTF derived from NMA in the VIIa-sTF complex with those of VIIa or sTF in an uncomplexed condition. The atomic fluctuations of the Calpha atoms of sTF complexed with VIIa did not significantly differ from those of sTF without VIIa. In contrast, the atomic fluctuations of VIIa complexed with sTF were much smaller than those of VIIa without sTF. These results suggest that domain motions of VIIa molecule alone are markedly dampened in the VIIa-sTF complex and that the sTF molecule is relatively more rigid than the VIIa molecule. This may indicate functions of TF as a cofactor.  相似文献   

7.
The intrinsic pathway of coagulation is initiated when zymogen factor VII binds to its cell surface receptor tissue factor to form a catalytic binary complex. Both the activation of factor VIIa and the expression of serine protease activity of factor VIIa are dependent on factor VII binding to tissue factor lipoprotein. To better understand the molecular basis of these rate-limiting events, the interaction of zymogen factor VII and tissue factor was investigated using as probes both a murine monoclonal antibody and a monospecific rabbit antiserum to human factor VII. To measure factor VIIa functional activity, a two-stage chromogenic assay was used; an assay which measures the factor Xa generated by the activation of factor VII to factor VIIa. Purified immunoglobulin from murine monoclonal antibody 231-7, which was shown to be reactive with amino acid residues 51-88 of the first epidermal growth factor-like (EGF) domain of human factor VII, inhibited the activation of factor VII to factor VIIa in a dose-dependent manner. The mechanism of this inhibition was demonstrated using a novel solid-phase ELISA which quantitatively measured the binding of purified factor VII zymogen to tissue factor adsorbed onto microtiter wells. Thus, the binding of factor VII zymogen to immobilized tissue factor was inhibited by antibody 231-7, again in a dose-dependent manner. Similar results were obtained using a monospecific rabbit antiserum to human factor VII which also reacted with the beta-galactosidase fusion proteins containing amino acid residues 51-88 (exon 4) of human factor VII. We conclude therefore that the exon 4-encoded amino acids of the first EGF domain of human factor VII constitute an essential domain participating in the binding of factor VII to tissue factor.  相似文献   

8.
Safa O  Morrissey JH  Esmon CT  Esmon NL 《Biochemistry》1999,38(6):1829-1837
Factor VIIa, in complex with tissue factor (TF), is the serine protease responsible for initiating the clotting cascade. This enzyme complex (TF/VIIa) has extremely restricted substrate specificity, recognizing only three previously known macromolecular substrates (serine protease zymogens, factors VII, IX, and X). In this study, we found that TF/VIIa was able to cleave multiple peptide bonds in the coagulation cofactor, factor V. SDS-PAGE analysis and sequencing indicated the factor V was cleaved at Arg679, Arg709, Arg1018, and Arg1192, resulting in a molecule with a truncated heavy chain and an extended light chain. This product (FVTF/VIIa) had essentially unchanged activity in clotting assays when compared to the starting material. TF reconstituted into phosphatidylcholine vesicles was ineffective as a cofactor for the factor VIIa cleavage of factor V. However, incorporation of phosphatidylethanolamine in the vesicles had little effect over the presence of 20% phosphatidylserine. FVTF/VIIa was as sensitive to inactivation by activated protein C (APC) as thrombin activated factor V as measured in clotting assays or by the appearance of the expected heavy chain cleavage products. The FVTF/VIIa could be further cleaved by thrombin to release the normal light chain, albeit at a significantly slower rate than native factor V, to yield a fully functional product. These studies thus reveal an additional substrate for the TF/VIIa complex. They also indicate a new potential regulatory pathway of the coagulation cascade, i.e., the production of a form of factor V that can be destroyed by APC without the requirement for full activation of the cofactor precursor.  相似文献   

9.
Tissue factor (TF) binds the zymogen (VII) and activated (VIIa) forms of coagulation factor VII with high affinity. The structure determined for the sTF-VIIa complex [Banner, D. W., et al. (1996) Nature 380, 41-46] shows that all four domains of VIIa (Gla, EGF-1, EGF-2, and protease) are in contact with TF. Although a structure is not available for the TF-VII complex, the structure determined for free VII [Eigenbrot, C., et al. (2001) Structure 9, 675-682] suggests a significant conformational change for the zymogen to enzyme transition. In particular, the region of the protease domain that must contact TF has a conformation that is altered from that of VIIa, suggesting that the VII protease domain interacts with TF in a manner different from that of VIIa. To test this hypothesis, a panel of 12 single-site sTF mutants, having substitutions of residues observed to contact the proteolytic domain of VIIa, have been evaluated for binding to both zymogen VII and VIIa. Affinities were determined by surface plasmon resonance measurements using a noninterfering anti-TF monoclonal antibody to capture TF on the sensor chip surface. Dissociation constants (K(D)) measured for binding to wild-type sTF are 7.5 +/- 2.4 nM for VII and 5.1 +/- 2.3 nM for VIIa. All of the sTF mutants except S39A and E95A exhibited a significant decrease (>2-fold) in affinity for VIIa. The changes in affinity measured for VII or VIIa binding with substitution in sTF were comparable in magnitude. We conclude that the proteolytic domain of both VII and VIIa interacts with this region of sTF in a nearly identical fashion. Therefore, zymogen VII can readily adopt a VIIa-like conformation required for binding to TF.  相似文献   

10.
Tissue factor (TF), a small transmembrane receptor, binds factor VIIa (FVIIa), and the formed complex initiates blood coagulation by proteolytic activation of substrate factors IX and X. A naturally occurring mutation in the human TF gene was recently reported, where a single-base substitution results in an R200W mutation in the TF extracellular domain [Zawadzki, C., Preudhomme, C., Gaveriaux, V., Amouyel, P., and Jude, B. (2002) Thromb. Haemost. 87, 540-541]. This mutation appears to be associated with low monocyte TF expression and may protect against thrombosis but has not been associated with any pathological condition, and individuals who present the heterozygous trait appear healthy. Here, we report the activity, folding, and aggregation behavior of the R200W mutant of the 219-residue soluble extracellular domain of TF (sTF(R200W)) compared to that of the wild-type protein (sTF(wt)). No differences in stability or FVIIa cofactor activity but an impaired ability to promote FX activation at physiological conditions between the sTF(R200W) mutant and sTF(wt) were evident. Increased binding of 1-anilino-8-naphthalene-sulfonic acid (ANS) to sTF(R200W) indicated a population of partially folded intermediates during denaturation. sTF(R200W) showed a dramatically increased propensity for aggregate formation compared to sTF(wt) at mildly acidic pHs, with an increased rate of aggregation during conditions, promoting the intermediate state. The lowered pH resistance could explain the loss of sTF(R200W) in vivo because of aggregation of the mutant. The intrinsic structure of the sTF aggregates appears reminiscent of amyloid fibrils, as revealed by thioflavin T fluorescence, atomic force microscopy, and transmission electron microscopy. We conclude that the lowered activity for FX activation and the propensity of the mutant protein to misfold and aggregate will both contribute to decreased coagulation activity in TF(R200W) carriers, which could protect from thrombotic disease.  相似文献   

11.
Blood coagulation is triggered by the formation of a complex between factor VIIa (FVIIa) and its cofactor, tissue factor (TF). TF-FVIIa is inhibited by tissue factor pathway inhibitor (TFPI) in two steps: first TFPI is bound to the active site of factor Xa (FXa), and subsequently FXa-TFPI exerts feedback inhibition of TF-FVIIa. The FXa-dependent inhibition of TF-FVIIa activity by TFPI leads to formation of the quaternary complex TF-FVIIa-FXa-TFPI. We used site-directed fluorescence probing to map part of the region of soluble TF (sTF) that interacts with FXa in sTF-FVIIa-FXa-TFPI. We found that the C-terminal region of sTF, including positions 163, 166, 200 and 201, is involved in binding to FXa in the complex, and FXa, most likely via its Gla domain, is also in contact with the Gla domain of FVIIa in this part of the binding region. Furthermore, a region that includes the N-terminal part of the TF2 domain and the C-terminal part of the TF1 domain, i.e. the residues 104 and 197, participates in the interaction with FXa in the quaternary complex. Moreover, comparisons of the interaction areas between sTF and FX(a) in the quaternary complex sTF-FVIIa-FXa-TFPI and in the ternary complexes sTF-FVII-FXa or sTF-FVIIa-FX demonstrated large similarities.  相似文献   

12.
Cells of monocytic differentiation can promote proteolytic activation of factor X following binding to the adhesive receptor Mac-1. We now show that the product, factor Xa, binds to a second receptor on these cells in a Ca2+-dependent reaction. Functionally, this results in the capacity to convert prothrombin to thrombin. The factor Xa receptor was identified by monoclonal antibody (7G12) reactive with plasma factor V/Va, but selected for reactivity with THP-1 cells. It reacted with 71.2 +/- 10.1% of monocytes, bound 153,600 +/- 33,500 sites/THP-1 cell, blocked binding of 125I-factor Xa, inhibited formation of thrombin, and immunoprecipitated 125I-factor Xa chemically cross-linked to its receptor on THP-1 cells. Following surface iodination or intrinsic labeling of THP-1 cells, antibody 7G12 immunoprecipitated a 74-kDa molecular species, similar to plasma factor Va light chain. Thus, monocytes and monocyte-like cells synthesize and express a factor V/Va-like receptor for factor Xa and organize a functional prothrombinase complex. The simultaneous membrane coexpression of a factor X receptor (Mac-1) and a factor Xa receptor as demonstrated by two-color flow cytofluorometric analysis of monocytes or THP-1 cells is consistent with a sequential receptor cascade for coordinated molecular assembly of coagulation proteins on specialized cells.  相似文献   

13.
We recently demonstrated that the residues 337-372, comprising the acidic C-terminal region in A1 subunit, interact with factor Xa during the proteolytic inactivation of factor VIIIa (Nogami, K., Wakabayashi, H., and Fay, P. J. (2003) J. Biol. Chem. 278, 16502-16509). We now show this sequence is important for factor Xa-catalyzed activation of factor VIII. Peptide 337-372 markedly inhibited cofactor activation, consistent with a delay in the rate of cleavage at the A1-A2 junction. Studies using the isolated factor VIII heavy chain indicated that the peptide completely blocked cleavage at the A1-A2 junction (IC50 = 11 microm) and partially blocked cleavage at the A2-B junction (IC50 = 100 microm). Covalent cross-linking was observed between the 337-372 peptide and factor Xa following reaction with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, and the peptide quenched the fluorescence of dansyl-Glu-Gly-Arg active site-modified factor Xa, suggesting that residues 337-372 directly interact with factor Xa. Studies using a monoclonal antibody recognizing residues 351-365 as well as the peptide to this sequence further restricted the interactive region. Mutant factor VIII molecules in which clustered acidic residues in the 337-372 segment were converted to alanine were evaluated for activation by factor Xa. Of the mutants tested, only factor Xa-catalyzed activation of the D361A/D362A/D363A mutant was inhibited with peak activity of approximately 50% and an activation rate constant of approximately 30% of the wild type values. These results indicate that the 337-372 acidic region separating A1 and A2 domains and, in particular, a cluster of acidic residues at position 361-363 contribute to a unique factor Xa-interactive site within the factor VIII heavy chain that promotes factor Xa docking during cofactor activation.  相似文献   

14.
Membrane anchoring of tissue factor (TF), the cell receptor for coagulation factor VIIa (VIIa), exemplifies an effective mechanism to localize proteolysis at the cell surface. A recombinant TF mutant (TF1-219), deleted of membrane spanning and intracellular domains, was used to evaluate the role of phospholipid interactions for assembly of substrate with the catalytic TF.VIIa complex. TF1-219 was secreted by cells rather than expressed as a cell membrane protein. Unlike free VIIa, TF1-219 as well as the TF1-219.VIIa complex demonstrated no stable association with phospholipid. In the absence of lipid, kinetic evaluation of substrate factor X cleavage by free VIIa, TF.VIIa, and TF1-219.VIIa suggests that the catalytic function of VIIa rather than substrate recognition is enhanced by complex formation. Furthermore, compared with free factor X, factor X on phospholipid was preferentially cleaved as a substrate by TF1-219.VIIa. TF-dependent initiation of the coagulation protease cascades thus involves an enhancement of the activation of factor X on the cell surface by a crucial role of the TF transmembrane domain to membrane anchor the reaction, by the TF extracellular domain to provide protein-protein interactions with VIIa to enhance the activity of the catalytic domain of VIIa, and the preferential presentation of factor X as a substrate when associated with phospholipid surfaces.  相似文献   

15.
We find that the isolated, extracellular domain of tissue factor (TF1-218; sTF) exhibits only 4% of the activity of wild-type transmembrane TF (TF1-263) in an assay that measures the conversion of factor X to Xa by the TF:VIIa complex. Further, the activity of sTF is manifest only when vesicles consisting of phosphatidylserine and phosphatidylcholine (30/70 w/w) are present. To determine whether the decreased activity results from weakened affinity of sTF for VIIa, we studied their interaction using equilibrium ultracentrifugation, fluorescence anisotropy, and an activity titration. Ultracentrifugation of the sTF:VIIa complex established a stoichiometry of 1:1 and an upper limit of 1 nM for the equilibrium dissociation constant (Kd). This value is in agreement with titrations of dansyl-D-Phe-L-Phe-Arg chloromethyl ketone active site labeled VIIa (DF-VIIa) with sTF using dansyl fluorescence anisotropy as the observable. Pressure dissociation experiments were used to obtain quantitative values for the binding interaction. These experiments indicate that the Kd for the interaction of sTF with DF-VIIa is 0.59 nM (25 degrees C). This value may be compared to a Kd of 7.3 pM obtained by the same method for the interaction of DF-VIIa with TF1-263 reconstituted into phosphatidylcholine vesicles. The molar volume change of association was found to be 63 and 117 mL mol-1 for the interaction of DF-VIIa with sTF and TF1-263, respectively. These binding data show that the sTF:VIIa complex is quantitatively and qualitatively different from the complex formed by TF1-263 and VIIa.  相似文献   

16.
Tissue factor is an integral membrane glycoprotein that serves as an essential cofactor for the blood coagulation factor VIIa. Recent studies have attempted to localize the tissue factor recognition determinant of human factor VIIa. While several regions of factor VIIa have been implicated as important for tissue factor binding, the high affinity tissue factor recognition determinant of human factor VIIa is unknown. In order to define the determinant, we constructed a set of six chimeric proteins composed of portions of factor VII and factor IX. We then utilized the chimeras in competition experiments with 125I-labeled factor VIIa for recombinant tissue factor bound to an Immobilon-P membrane. The data indicate that the high affinity tissue factor recognition determinant of human factor VIIa is within the epidermal growth factor domains.  相似文献   

17.
Initiation of the coagulation protease cascade as it assembles on cell surfaces requires limited proteolytic activation of the zymogen factor X. Not previously suspected to be the ligand of an organizing receptor on cell surfaces, we now describe that factor X specifically associates with cells of monocyte lineage and we identify the high affinity receptor for this zymogen. Following stimulation with ADP (10 microM), or with the ionophore ionomycin (1 microM), isolated human monocytes bind 125I-factor X in a saturable fashion with a dissociation constant (Kd) of 21.8-44.9 nM. Equilibrium binding analyses indicate that the reaction is optimal at room temperature, requires Ca2+ ions, and saturates at 128,500 +/- 21,300 molecules of 125I-factor X specifically associated with the cell surface. Molar excess of unlabeled factor X inhibits and reverses the binding, whereas the homologous gamma-carboxylated coagulation proteins factors II, VII, IX, IXa, and Xa are without effect. Similarly, chelation of divalent ions immediately dissociates bound 125I-factor X. The monoblast cell line U 937 and the monocytic cell line THP-1 when stimulated with ADP or ionomycin, bind 125I-factor X with characteristics similar to monocytes. Receptor identity was explored using antibodies to the leukocyte adhesive receptors Mac-1, LFA-1, and p150.95. Monoclonal antibodies specific for the alpha subunit of Mac-1 (M 1/70, LM 2/1) or for the common beta subunit (TS 1/18, 60.3) bound equally to resting and ADP- or ionomycin-stimulated cells and also completely blocked the binding of 125I-factor X to stimulated monocytes, U 937, or THP-1 cells. To distinguish between modulatory effects of the monoclonal antibodies and direct spatial hindrance binding of 125I-factor X to Mac-1 was analyzed directly. OKM10 anti-alpha subunit of Mac-1 monoclonal antibody immunoprecipitated 125I-factor X chemically cross-linked to its receptor on stimulated cells. In addition, the complement protein fragment C3bi, which is a recognized ligand for Mac-1, competitively inhibited the association of 125I-factor X. These findings indicate that human blood monocytes and less differentiated cells of this lineage possess an inducible receptor specific for factor X; and also support the conclusion that the heterodimeric leukocyte adhesive receptor Mac-1 functions as the specific receptor structure. We suggest that the novel properties of this receptor may be of importance in the organization and regulation of certain coagulation protease cascades on the monocyte surface.  相似文献   

18.
Exposure of blood to tissue factor leads to the formation of a high affinity tissue factor/factor VIIa complex which initiates blood coagulation. As a first step toward obtaining structural information of this enzyme system, a complex of active-site inhibited factor VIIa (F.VIIai) and soluble tissue factor (sTF) was prepared for crystallization. Crystals were obtained, but only after long incubation times. Analysis by SDS-PAGE and mass spectrometry indicated the presence of sTF fragments similar to those formed by proteolytic digestion with subtilisin (Konigsberg, W., Nemerson, Y., Fang, C., Lin, T.-C. Thromb. Haemost. 69:1171, 1993). To test the hypothesis that limited proteolysis of sTF facilitated the crystallization of the complex, sTF fragments were generated by subtilisin digestion and purified. Analysis by tandem mass spectrometry showed the presence of nonoverlapping N- and C-terminal sTF fragments encompassing more than 90% of the tissue factor extracellular domain. Enzymatic assays and binding studies demonstrated that an equimolar mixture of N- and C-terminal fragments bound to factor VIIa and fully restored cofactor activity. A complex of F.VIIai and sTF fragments was prepared for crystallization. Crystals were obtained using microseeding techniques. The best crystals had maximum dimensions of 0.12 × 0.12 × 0.6 mm and showed diffraction to a resolution of 3 Å. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Factors VII, IX, and X play key roles in blood coagulation. Each protein contains an N-terminal gamma-carboxyglutamic acid domain, followed by EGF1 and EGF2 domains, and the C-terminal serine protease domain. Protein C has similar domain structure and functions as an anticoagulant. During physiologic clotting, the factor VIIa-tissue factor (FVIIa*TF) complex activates both factor IX (FIX) and factor X (FX). FVIIa represents the enzyme, and TF represents the membrane-bound cofactor for this reaction. The substrates FIX and FX may utilize multiple domains in binding to the FVIIa*TF complex. To investigate the role of the EGF1 domain in this context, we expressed wild type FIX (FIX(WT)), FIX(Q50P), FIX(PCEGF1) (EGF1 domain replaced with that of protein C), FIX(DeltaEGF1) (EGF1 domain deleted), FX(WT), and FX(PCEGF1). Complexes of FVIIa with TF as well as with soluble TF (sTF) lacking the transmembrane region were prepared, and activations of WT and mutant proteins were monitored by SDS-PAGE and by enzyme assays. FVIIa*TF or FVIIa*sTF activated each mutant significantly more slowly than the FIX(WT) or FX(WT). Importantly, in ligand blot assays, FIX(WT) and FX(WT) bound to sTF, whereas mutants did not; however, all mutants and WT proteins bound to FVIIa. Further experiments revealed that the affinity of the mutants for sTF was reduced 3-10-fold and that the synthetic EGF1 domain (of FIX) inhibited FIX binding to sTF with K(i) of approximately 60 microm. Notably, each FIXa or FXa mutant activated FVII and bound to antithrombin, normally indicating correct folding of each protein. In additional experiments, FIXa with or without FVIIIa activated FX(WT) and FX(PCEGF1) normally, which is interpreted to mean that the EGF1 domain of FX does not play a significant role in its interaction with FVIIIa. Cumulatively, our data reveal that substrates FIX and FX in addition to interacting with FVIIa (enzyme) interact with TF (cofactor) using, in part, the EGF1 domain.  相似文献   

20.
Thrombin activated factor Va (factor VIIa, residues 1-709 and 1546-2196) has an apparent dissociation constant (Kd,app) for factor Xa within prothrombinase of approximately 0.5 nM. A protease (NN) purified from the venom of the snake Naja nigricollis nigricollis, cleaves human factor V at Asp697, Asp1509, and Asp1514 to produce a molecule (factor VNN) that is composed of a Mr 100,000 heavy chain (amino acid residues 1-696) and a Mr 80,000 light chain (amino acid residues 1509/1514-2196). Factor VNN, has a Kd,app for factor Xa of 4 nm and reduced clotting activity. Cleavage of factor VIIa by NN at Asp697 results in a cofactor that loses approximately 60-80% of its clotting activity. An enzyme from Russell's viper venom (RVV) cleaves human factor V at Arg1018 and Arg1545 to produce a Mr 150,000 heavy chain and Mr 74,000 light chain (factor VRVV, residues 1-1018 and 1546-2196). The RVV species has affinity for factor Xa and clotting activity similar to the thrombin-activated factor Va. Cleavage of factor VNN at Arg1545 by alpha-thrombin (factor VNN/IIa) or RVV (factor VNN/RVV) leads to enhanced affinity of the cofactor for factor Xa (Kd,app approximately 0.5 nM). A synthetic peptide containing the last 13 residues from the heavy chain of factor Va (amino acid sequence 697-709, D13R) was found to be a competitive inhibitor of prothrombinase with respect to prothrombin. The peptide was also found to specifically interact with thrombin-agarose. These data demonstrate that 1) cleavage at Arg1545 and formation of the light chain of factor VIIa is essential for high affinity binding and function of factor Xa within prothrombinase and 2) a binding site for prothrombin is contributed by amino acid residues 697-709 of the heavy chain of the cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号