首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strength and selectivity of the phytotoxicity of 11 sulfosuccinic acid ester surfactants were determined on the leaves of Tradescantia bicolor, and the data were evaluated by multivariate mathematical-statistical methods. Spectral mapping technique combined with stepwise regression analysis indicated that both the strength and the selectivity of the effect depend significantly on the specific hydrophobic surface area of the anionic surfactants determined in the presence of ions. The significant relationship between this hydrophobicity parameter and phytotoxic activity suggests the involvement of apolar (hydrophobic) forces in the plant-surfactant interaction. It was assumed that the apolar alkyl chains of the surfactants may insert in the hydrophobic part of the phospholipid bilayers causing membrane disorder and malfunction.  相似文献   

2.
The lipophilicity and specific hydrophobic area of 56 surfactants having different hydrophobic moiety and different length of ethylene oxide chain were determined by reversed-phase thin-layer chromatography and the strength and selectivity of the effect of sodium chloride and pH on the hydrophobicity parameters was elucidated using spectral mapping technique followed by two-dimensional nonlinear mapping. In each instance significant linear correlations were found between the lipophilicity and specific hydrophobic surface area of surfactants suggesting that from a chromatographic point of view they behave as a homologous series of solutes. It was established that the strength of the effect of both salt concentration and pH is relatively low and the selectivity of their influence on the hydrophobicity parameters is markedly different.  相似文献   

3.
Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.  相似文献   

4.
The lipophilicity and specific hydrophobic surface area of 12 8-substituted 2'-deoxyadenosine and 17 5-substituted-2'-deoxyuridine derivatives were determined by reversed-phase thin-layer chromatography in ion-free eluents and in eluents containing sodium chloride, sodium acetate and acetic acid. The strength and selectivity of the effect of eluent additives were separated by use of spectral mapping technique followed by two-dimensional nonlinear mapping. The relationship between the structural characteristics and hydrophobicity parameters was elucidated by stepwise regression analysis. Eluent additives exert a considerable influence on both hydrophobicity parameters. The effect of sodium chloride and acetic acid was higher than that of sodium acetate. The strength and selectivity of the sensitivity of nucleosides towards eluent additives significantly depended on the character of the ring structure and on the length of the apolar alkyl chain. The influence of the degree of unsaturation and the branching of the alkyl substituent was negligible.  相似文献   

5.
A biotransformation process has been developed for the production of (S)-N-(2-ethyl-6-methylphenyl) alanine by enantioselective hydrolysis of racemic methyl ester in the presence of Candida antarctica lipase B (CAL-B). However, the enantioselectivity of CAL-B towards the resolution is not high enough to obtain enantiomerically pure product. In order to improve the enantioselectivity of the enzyme, the effects of surfactants on CAL-B-catalyzed hydrolysis were tested. The results suggest that surfactants can influence the microenvironment of the enzyme, and the addition of Tween-80, in particular, to the reaction medium markedly enhanced the selectivity of CAL-B towards the substrate used, with the enantiomeric ratio (E-value) increasing from 11.3 to 60.1.  相似文献   

6.
The effect of several surfactants on peroxyoxalate chemiluminescence (PO‐CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO‐CL efficiency. Various effects of anionic, cationic, amphoteric and non‐ionic surfactants on the CL efficiency of PO‐CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non‐ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non‐ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water‐insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The effect of surfactants on the aggregation state of amphotericin B   总被引:3,自引:0,他引:3  
We have studied the effect of two surfactants, one non-ionic, lauryl sucrose (LS) and the other ionic, sodium deoxycholate (DOC), on the aggregation state of amphotericin B (AmB) and its selectivity towards ergosterol and cholesterol. It is shown that the addition of these surfactants has very similar effects on the AmB micelles. Below the critical micellar concentration of the surfactants, mixed micelles with AmB are first formed as a result of the penetration of the surfactant molecules into the AmB micelles. At higher concentrations of the surfactant molecules, the micellar structure is completely destroyed and AmB is found as monomers in solution. When the concentration of the surfactant is further increased, micelles of the surfactant molecules are built up, AmB remaining in monomeric form. However, the critical micellar concentration of LS is modified by the presence of AmB in solution, while that of DOC is not affected, thereby indicating that the interactions of AmB with LS are stronger than those of DOC with AmB. We also show that both surfactants enhance the selectivity of the AmB binding to sterols at exactly the concentrations of the surfactants which induce the monomerization of the antibiotic. It is observed that the maximal selectivity is found at a concentration of the surfactants corresponding to their particular CMC in presence of the antibiotic.  相似文献   

8.
A biotransformation process has been developed for the production of (S)-N-(2-ethyl-6-methylphenyl) alanine by enantioselective hydrolysis of racemic methyl ester in the presence of Candida antarctica lipase B (CAL-B). However, the enantioselectivity of CAL-B towards the resolution is not high enough to obtain enantiomerically pure product. In order to improve the enantioselectivity of the enzyme, the effects of surfactants on CAL-B-catalyzed hydrolysis were tested. The results suggest that surfactants can influence the microenvironment of the enzyme, and the addition of Tween-80, in particular, to the reaction medium markedly enhanced the selectivity of CAL-B towards the substrate used, with the enantiomeric ratio (E-value) increasing from 11.3 to 60.1.  相似文献   

9.
The adsorption behavior of five surfactants, cetyltrimethylammonium bromide (CTAB), Triton X-100, Tween 80, sodium dodecyl sulfate (SDS), and rhamnolipid, on a Pseudomonas aeruginosa strain and the effect of temperature and ionic strength (IS) on the adsorption were studied. The change of cell surface lypohydrophilic property caused by surfactant adsorption was also investigated. The results showed that the adsorption kinetics of the surfactants on the cell followed the second-order law. CTAB adsorption was the fastest one under the experimental conditions, and it took longest for SDS adsorption to equilibrate because of electric repulsion. The adsorption of Triton X-100 and Tween 80 was characterized by short equilibration time, and rhamnolipid adsorption reached equilibrium in about 90 min. The adsorption isotherms of all the surfactants on the bacterium fitted Freundlich equation well, but the adsorption capacity and mode were variations for the surfactants as indicated by k and n parameters in the equations. The adsorption mode for all the surfactants except SDS is probably hydrophilic interaction because the adsorption totally turned the cell surface to be more hydrophobic. Neither the temperature nor the IS had significant effect on CTAB adsorption, but higher IS significantly enhanced SDS adsorption and modestly strengthened adsorption of Triton X-100, Tween 80, and rhamnolipid. Higher temperature strengthened adsorption of SDS but weakened the adsorption of Triton X-100, Tween 80, and rhamnolipid.  相似文献   

10.
Microbiological aspects of surfactant use for biological soil remediation   总被引:7,自引:0,他引:7  
Biodegradation of hydrophobic organic compounds in polluted soil is a process involving interactions among soil particles, pollutants, water, and micro-organisms. Surface-active agents or surfactants are compounds that may affect these interactions, and the use of these compounds may be a means of overcoming the problem of limited bioavailability of hydrophobic organic pollutants in biological soil remediation. The effects of surfactants on the physiology of micro-organisms range from inhibition of growth due to surfactant toxicity to stimulation of growth caused by the use of surfactants as a co-substrate. The most important effect of surfactants on the interactions among soil and pollutant is stimulation of mass transport of the pollutant from the soil to the aqueous phase. This can be caused by three different mechanisms: emulsification of liquid pollutant, micellar solubilisation, and facilitated transport. The importance of these mechanisms with respect to the effect of surfactants on bioavailability is reviewed for hydrophobic organic pollutants present in different physical states. The complexity of the effect of surfactants on pollutant bioavailability is reflected by the results in the literature, which range from stimulation to inhibition of desorption and biodegradation of polluting compounds. No general trends can be found in these results. Therefore, more research is necessary to make the application of surfactants a standard tool in biological soil remediation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The effects of various surfactants on the activity and stability of the human adenosine A3 receptor (A3) were investigated. The receptor was expressed using stably transfected HEK293 cells at a concentration of 44 pmol functional receptor per milligram membrane protein and purified using over 50 different nonionic surfactants. A strong correlation was observed between a surfactant's ability to remove A3 from the membrane and the ability of the surfactant to remove A3 selectively relative to other membrane proteins. The activity of A3 once purified also correlates well with the selectivity of the surfactant used. The effects of varying the surfactant were much stronger than those achieved by including A3 ligands in the purification scheme. Notably, all surfactants that gave high efficiency, selectivity and activity fall within a narrow range of hydrophile-lipophile balance values. This effect may reflect the ability of the surfactant to pack effectively at the hydrophobic transmembrane interface. These findings emphasize the importance of identifying appropriate surfactants for a particular membrane protein, and offer promise for the development of rapid, efficient, and systematic methods to facilitate membrane protein purification.  相似文献   

12.
In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.  相似文献   

13.
The condensation of a primary amine with fatty acids has been studied to determine optimum conditions for selective formation of amide surfactants via enzymatic amidification. Monoacylated ethanolamide and the diacylated amide-ester can be isolated from the reaction mixture, but the monoacylated ester cannot be isolated. The selectivity of the reaction depends on the solubility of the intermediate amide. Continuous precipitation of this product decreases the amount of amide-ester produced. Solubility values of the desired product (amide) are reported for different conditions.In acetonitrile, the ethyl ester of the corresponding fatty acid has been used successfully to avoid formation/precipitation of the ion-pair of the precursor reagents. In this medium, use of the transacylation reaction permits one to accelerate the reaction without producing a significant change in the selectivity toward the intermediate amide. This strategy is not successful in n-hexane where the solubilities of both ethanolamine and its ion-pair with lauric acid are similar.Results obtained for high loadings of substrates have been analyzed. In n-hexane and acetonitrile, the kinetics of the direct acylation reactions are controlled by the limited solubility of the ion pair formed by the two precursor reagents For the transacylation reaction in acetonitrile, at a sustrate loading of 2 mol l(-1,) selective production of as much as 92 mole percent N-acyl ethanolamine was observed in only 1.5 h.  相似文献   

14.
The modulation of substrate selectivity of human plasma LTP reaction is the subject of the present investigation. The moderate selectivity by a factor of 5 to 6 was observed in the LTP-catalyzed transfer of cholesteryl ester over triacylglycerol between plasma lipoproteins. On the other hand, the transfer of cholesteryl ester by LTP was highly selective over the negligible transfer of triacylglycerol, by a factor of 60 to 500, between the microemulsions with LDL size, regardless of the activators such as human and pig apolipoprotein (apo) A-I, human apo C-III and apo E that bound to the surface of the emulsion in equilibrium. The presence of free cholesterol in these microemulsions reduced slightly the rate of cholesteryl ester transfer but had no effect on triacylglycerol transfer. Other surface-active reagents such as cholic acid, Triton X-100 and Tween-20, did not have an effect on the triacylglycerol transfer either. Triacylglycerol transfer by LTP became measurable between such lipid particles as prepared by co-sonication of lipid with pig apo A-I and isolated as the mixed-microemulsions in the density of LDL and HDL. In these conditions, the substrate selectivity for cholesteryl ester over triacylglycerol was a factor of 6 to 16 mimicking the ratio in plasma lipoproteins. The conformation of pig apo A-I estimated by circular dichroism showed that its apparent helical content was further more induced when apo A-I was integrated into the mixed-microemulsion by co-sonication than the lipid-bound apo A-I in equilibrium. Apo A-I, thus integrated into lipid particles, was highly resistant to the denaturation by guanidine hydrochloride while the lipid-bound apo A-I in equilibrium was denatured as readily as the lipid-free protein. Thus, triacylglycerol transfer by LTP was induced by structural modulation of substrate-carrying lipid particles such as higher integration of apolipoproteins.  相似文献   

15.
The flexibility and selectivity of size exclusion chromatography (SEC) for protein purification can be modified by adding non-ionic micelle-forming surfactants to the mobile phase. The micelles exclude proteins from a liquid phase similar to the exclusion effect of the polymer fibers of the size exclusion resin. This surfactant-aided size exclusion chromatography technology (SASEC) is demonstrated on the separation of two model proteins; bovine serum albumin (BSA) and myoglobin (Myo). The effect of the added surfactants on the distribution behavior of the proteins is predicted adequately by a size exclusion model presented in this paper.  相似文献   

16.
Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper   总被引:7,自引:0,他引:7  
Effects of five types of nonionic surfactant having a polyoxyethylene glycol (POG) group on enzymatic hydrolysis of used newspaper were studied. The surfactants examined in this work always enhanced the saccharification. The optimum surfactant concentration was 0.05% (wt/substrate wt) in the case of POG(21) sorbitane oleic ester. Among the surfactants, POG phenyl ether types showed the highest enhancement effect, for example, with two times higher conversion at 80 h than that without surfactant. Using POG nonylphenyl ether series, the effects of surfactant were considered from the point of the HLB (hydrophile-lypophile balance) value. The GFC (gel filtration chromatography) analysis of free enzyme quantity were also done to study the effect of surfactant on enzyme adsorption onto substrate. As the HLB value increased, the free enzyme quantity and the conversion both increased. It appears that surfactants help the enzyme to desorb from the binding site on the substrate surface after the completion of saccharification at that site.  相似文献   

17.
A papain-catalyzed reaction involving the covalent attachment of L-leucine ra-dodecyl ester [Agric. Biol. Chem., 44, 1979 (1980)] was applied to gelatin and succinylated fish protein concentrate. Proteinaceous surfactants formed were found suitable for emulsification of soybean oil. The emulsions prepared with these surfactants were characterized by having a variety of functional properties in terms of hardness, adhesiveness, viscosity and viscoelasticity. Any particular property could be reproduced by intentionally setting the proper conditions for emulsification; for example, the use of a high surfactant concentration resulted in gel formation. The functions of the proteinaceous surfactants were different in many respects from those of Tween-60 and a type of sucrose fatty acid ester used as controls. Several data were added explaining such differences. The feasibility of preparing a mayonnaise-like concentrated emulsion by use of the proteinaceous surfactants is discussed.  相似文献   

18.
Rheological and thermal properties of agar sol and gel in presence of various cationic, anionic and non-ionic surfactants are reported. The agar used was from the red seaweed Gelidiella acerosa. The gel strength, viscosity, rigidity (G'), gelling temperature and melting temperature were observed to decrease in presence of non-ionic surfactants whereas these were enhanced in presence of ionic surfactants. TGA studies showed that 1.5% agar gels containing non-ionic surfactants lose water at a lower temperature than the control agar gel whereas gels containing ionic surfactants hold on to water more tenaciously. DSC studies, on the other hand, show that the gel to sol transition occurs at lower temperatures in presence of non-ionic surfactants and at higher temperature in presence of ionic surfactants when compared with the control gel. The non-ionic surfactants, Triton X-100 and Brij 35, enabled relatively concentrated agar extractive to be filtered readily, as a result of which water usage in the process could be reduced by 50%. The surfactant was subsequently removed through freeze-thaw operations to restore the gelling capacity of the agar. The finding that 0.3-0.4% (w/v) sodium lauryl sulfate (SLS) lowers the sol-gel transition temperature from 41 to 36 degrees C without adversely affecting gel strength is another useful outcome of the study that may enable better formulations of bacteriological agar to be prepared.  相似文献   

19.
The application of enzymatic catalysis for the synthesis of polysaccharide-based surfactants was investigated. The polysaccharide dextran, a neutral bacterial polysaccharide consisting of -1,6 linked glucose units, was chemically modified by the attachment of hydrophobic groups through a transesterification reaction with a vinyl decanoate. A screening of commercially available lipases and protease for the synthesis of amphiphilic polysaccharides in DMSO suggested that lipase AY from Candida rugosa modified dextran T-40 with vinyl decanoate at the highest conversion. A pH-adjustment in a phosphate buffer at pH 7.5 prior to use is crucial to make this enzyme active in DMSO. The effect of enzyme concentration and mole ratio of fatty ester to dextran T-40 on the conversion and the rate of reaction were studied. Finally, investigation of the kinetics and regioselectivity of lipase AY-catalyzed modification offer a possibility to regulate the position and the extent of hydrophobic group attached to dextran. These two properties are fundamental for controlling the physico-chemical properties of the final polymeric surfactants.  相似文献   

20.
Lipase from Serratia marcescens ECU1010 was cloned and overexpressed in E. coli. After optimization, the maximum lipase activities reached 5000–6000 U/l and this recombinant lipase could enantioselectively hydrolyze (S)-ketoprofen esters into (S)-ketoprofen. Among six alkyl esters of racemic ketoprofen investigated, this lipase showed the best enantioselectivity for the kinetic resolution of ketoprofen ethyl ester, with an eep (enantiomeric excess of product) of 91.6% and E-value of 63 obtained at 48.2% conversion. Twelve nonionic surfactants were tested for enhancing the enantioselectivity of this lipase in the bioresolution of ketoprofen ethyl ester. A very high E-value of 1084 was achieved, with an optical purity of >99% eep and a yield of 42.6% in the presence of 3% Brij 92V. Further studies showed that the selectivity of the lipase was improved with the increase of Brij 92V concentration. The substrate (ketoprofen ethyl ester) does not inhibit the lipase activity, while the product (S)-ketoprofen inhibits the lipase activity to some extent. These results indicate that the S. marcescens lipase is very useful for biocatalytic production of chiral profens such as (S)-ketoprofen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号