首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorptive properties of phospholipids of pulmonary surfactant are markedly influenced by the presence of three related proteins (26-38 KD, reduced) found in purified surfactant. Whether these proteins are pre-assembled with lipids before secretion is uncertain but would be expected for a lipoprotein secretion. We performed indirect immunocytochemistry on frozen thin sections of rat lung to identify cells and intracellular organelles that contain these proteins. The three proteins, purified from lavaged surfactant, were used to generate antisera in rabbits. Immunoblotting of rat surfactant showed that the IgG reacted with the three proteins and a 55-60 KD band which may be a polymer of the lower MW species. Specific gold labeling occurred over alveolar type II cells, bronchiolar Clara cells, alveolar macrophages, and tubular myelin. In type II cells labeling occurred in synthetic organelles and lamellar bodies, which contain surfactant lipids. Lamellar body labeling was increased fivefold by pre-treating tissue sections with a detergent. Multivesicular bodies and some small apical vesicles in type II cells were also labeled. Secondary lysosomes of alveolar macrophages were immunoreactive. Labeling in Clara cells exceeded that of type II cells, with prominent labeling in secretory granules, Golgi apparatus, and endoplasmic reticulum. These observations clarify the organelles and pathways utilized in the elaboration of surfactant. After synthesis, the proteins move, probably via multivesicular bodies, to lamellar bodies. Both lipids and proteins are present in tubular myelin. Immunologically identical or closely similar proteins are synthesized by Clara cells and secreted from granules which appear not to contain lipid. The role of these proteins in bronchiolar function is unknown.  相似文献   

2.
The study concerns the contents of the rat alveolus during the course of development. This contents in the fetus is composed exclusively of lamellar bodies, with tubular myelin figures connected to them; in the neonates is composed also of material layered on the surface of the alveolar cells which is initially filamentous, osmiophilic and ruthenium red-negative, then, later on, homogeneous and ruthenium red-positive.  相似文献   

3.
The goals of this investigation were to determine whether subfractions of alveolar surfactant that have different physical and biochemical properties are preferentially taken up from the alveolar air space into lamellar bodies and to correlate the magnitude of the uptake with the properties of the fractions. Radiolabeled subfractions were obtained by differential centrifugation of lavage fluid from rabbits that had been intravenously injected with radioactive palmitate. The subfractions were P (pellet) 3 (1,000 g, 20 min), P4 (60,000 g, 60 min), P5 (100,000 g, 16 h). Subfractions were instilled into the lungs of anesthetized spontaneously breathing adult rabbits, and lavage and lamellar body fractions were isolated at later times. P3 and P4 were taken up to a larger extent than was P5 or liposomes prepared from a P4 lipid extract. The fractions that were preferentially taken up (P3 and P4) contained surfactant apoprotein (APO) 36, tubular myelin, multilamellar vesicles, and were rapidly adsorbed to an air-water interface. P3 also contained APO 10. These results demonstrate that different forms of surfactant are recycled at different rates and suggest that there is specificity in the recycling process.  相似文献   

4.
Using immunogold labeling of fixed, cryosubstituted tissue sections, we compared the distribution of lysozyme, an oxidant-sensitive lamellar body protein, with that of surfactant protein A (SP-A) in rat Type II cells, extracellular surfactant forms, and alveolar macrophages. Morphometric analysis of gold particle distribution revealed that lysozyme and SP-A were present throughout the secretory and endosomal pathways of Type II cells, with prominent localization of lysozyme in the peripheral compartment of lamellar bodies. All extracellular surfactant forms were labeled for both proteins with preferential labeling of tubular myelin and unilamellar vesicles. Labeling of tubular myelin for SP-A was striking when compared with that of lamellar bodies and other extracellular surfactant forms. Lamellar body-like forms and multilamellar structures were uniformly labeled for lysozyme, suggesting that this protein is rapidly redistributed within these forms after secretion of lysozyme-laden lamellar bodies. By contrast, increased labeling for SP-A was observed over peripheral membranes of lamellar body-like forms and multilamellar structures, apparently reflecting progressive SP-A enrichment of these membranes during tubular myelin formation. The results indicate that lysozyme is an integral component of the lamellar body peripheral compartment and secreted surfactant membranes, and support the concept that lysozyme may participate in the structural organization of lung surfactant.  相似文献   

5.
Immunogold labeling on sections of a freeze-substituted tubular myelin-enriched fraction isolated from a bronchoalveolar lavage of rat lung showed that surfactant protein A (SP-A) occurs predominantly at the corners of the tubular myelin lattice. Seventy-nine percent of the gold particles were located within 20 nm from a corner. Extracellular SP-A was detected only in the tubular myelin lattice and not in vesicles or secreted lamellar bodies. Ultra-thin cryosections of rat lung fixed in vivo showed that intracellular SP-A was distributed homogeneously over the stacked membranes of lamellar bodies in alveolar Type II cells. The presence of SP-A at the corners of the tubular myelin lattice suggests an important role of this protein in the formation and/or maintenance of this highly ordered lattice.  相似文献   

6.
Surfactant subtypes in mice: characterization and quantitation   总被引:2,自引:0,他引:2  
Surfactant obtained by bronchoalveolar lavage of normal adult mice was separated into subtypes by a one-step centrifugation to equilibrium on continuous sucrose gradients. Mouse surfactant resolved in this way exists in three subtypes with similar phospholipid compositions. A "light" subtype of buoyant density 1.027 +/- 0.012 (SD) g/ml comprises 43 +/- 18% of the total alveolar lavage phospholipid, has little surface activity, and consists exclusively of small unilamellar vesicles. A "heavy" subtype of buoyant density 1.055 +/- 0.016 g/ml comprises 48 +/- 11% of the total, is surface active, and consists of small amounts of tubular myelin among large empty vesicles. A third component, called "ultraheavy," comprises 9 +/- 4% of the total alveolar lavage phospholipid, has a density of 1.072 +/- 0.020 g/ml, is surface active, and consists of large aggregates of tubular myelin associated with lamellar bodylike structures. Labeling studies suggested that the ultraheavy material was labeled first and was of the same density as purified lamellar bodies. These results are consistent with the view that, in mice, surfactant is secreted into the alveolar compartment in an ultraheavy form, which evolves into the heavy and light forms.  相似文献   

7.
Summary Dog lungs have been fixed by immersion and submitted to two histochemical procedures. An iodoplatinate reaction technique to demonstrate choline phospholipids stains cell membranes, inclusion bodies of type II alveolar epithelial cells and tubular myelin figures of pulmonary surfactant, the latter as electron-dense lines measuring 5 nm. The ruthenium red procedure gives rise to an intense contrast of the free surface of alveolar epithelium. The 5 nm-lines of the pulmonary surfactant are seen as electron-lucent lines, but bordered by electron-dense rims. Though both techniques have limitations in their interpretation, which are discussed in this paper, they demonstrate the tubular myelin figures to be a highly organized mixture of phospholipids and glycoproteins.  相似文献   

8.
Dog lungs have been fixed by immersion and submitted to two histochemical procedures. An iodoplatinate reaction technique to demontrate choline phospholipids stains cell membranes, inclusion bodies of type II alveolar epithelial cells and tubular myelin figures of pulmonary surfactant, the latter as electron-dense lines measuring 5 nm. The ruthenium red procedure gives rise to an intense contrast of the free surface of alveolar epithelium. The 5 nm-lines of the pulmonary surfactant are seen as electron-lucent lines, but bordered by electron-dense rims. Though both techniques have limitations in their interpretation, which are discussed in this paper, they demonstrate the tubular myelin figures to be a highly organized mixture of phospholipids and glycoproteins.  相似文献   

9.
Lamellar bodies were isolated from dexamethasone and T3-treated explant cultures of human fetal lung, using sucrose density-gradient centrifugation. We examined their content of surfactant apoprotein A (SP-A), and their ability to form surface films and to undergo structural transformation in vitro. SP-A measured by ELISA composed less than 2% of total protein within lamellar bodies; this represented, as a minimum estimate, a 2-12-fold enrichment over homogenate. One- and two-dimensional gel electrophoresis also suggested that SP-A was a minor protein component of lamellar bodies. Adsorption of lamellar bodies to an air/water interface was moderately rapid, but accelerated dramatically upon addition of exogenous SP-A in ratios of 1:2-16 (SP-A:phospholipid, w/w). Similar adsorption patterns were seen for lamellar bodies from fresh adult rat and rabbit lung. Lamellar bodies incubated under conditions that promote formation of tubular myelin underwent structural rearrangement only in the presence of exogenous SP-A, with extensive formation of multilamellate whorls of lipid bilayers (but no classical tubular myelin lattices). We conclude that lamellar bodies are enriched in SP-A, but have insufficient content of SP-A for structural transformation to tubular myelin and rapid surface film formation in vitro.  相似文献   

10.
Rat alveolar Type II cells were immunostained with antibodies directed against chromogranin A (monoclonal, LK2H10) and chromogranins A and B (polyclonal, LKZM1U). The chromogranins or chromogranin-like proteins were identified in cells in lung tissue sections and isolated Type II cells at the light and electron microscopic levels. We used post-embedding immunoelectron microscopy, with immunogold, to detect the proteins' immunoreactivity in osmicated tissues. Gold particles were distributed over the phospholipid lamellae within the lamellar bodies of alveolar Type II cells and over the lattice structure of tubular myelin. Quantitative analysis of gold labeling densities in the various cell compartments indicated that only the latter two structures were specifically labeled. Controls, which included pre-absorption of both anti-chromogranin antibodies with excess chromogranin A or with native surfactant, resulted in a greater than 60% decrease in gold labeling. A possible role of chromogranins or chromogranin-like proteins as Ca2+ binding proteins in alveolar Type II cells is discussed.  相似文献   

11.
Surfactant protein D (SP-D), a multimeric calcium-dependent lectin isolated from pulmonary alveolar lavage, has been previously shown to interact reversibly with crude surfactant [Persson et al. (1990) J. Biol. Chem. 265, 5755-5760]. In this study, SP-D is shown to interact reversibly with a preparation of organelles enriched in lamellar bodies, in a manner inhibited by calcium-chelating agents and by competing saccharides. An interaction with an endogenous glycoprotein could not be identified by electrophoresis of surfactant or lamellar body-associated proteins followed by electrotransfer of the separated proteins to nitrocellulose and then probing with radioiodinated SP-D via lectin overlay. Separation of the surfactant or lamellar body lipids on two-dimensional thin-layer chromatography (2D-TLC) followed by probing with radioiodinated SP-D via lectin overlay demonstrated binding to a single lipid. This interaction was dependent on the presence of calcium and was inhibited by competing saccharides. By assaying column fractions for the ability to bind radioiodinated SP-D after TLC, the glycolipid was purified to homogeneity and identified as phosphatidylinositol (PI). Identification was confirmed by mass spectrometry. We further demonstrate the ability of radiolabeled SP-D to bind to PI presented in a lipid bilayer through separation of free SP-D from liposome-bound SP-D on density gradients of Percoll. The interaction of SP-D with PI is dependent on calcium and inhibited by competing saccharides. SP-D binds with similar efficiency to liposomes with mole fractions of PI ranging from 2.5% to 30%, thereby demonstrating the lectin's ability to recognize mole fractions of PI available in surfactant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
《The Journal of cell biology》1977,74(3):1027-1031
A mechanism is suggested by which the membranes of lamellar bodies are converted to tubular myelin (TM) in the lung. It is argued that a simple corrugation of the membranous sheets can produce the TM formation. Such corrugation would occur in response to simple stresses acting on the lamellar body membranes. The intersections of the tubular figures are formed by fusion of adjacent corners in the corrugations. This results in a more stable hydrophobic bonding of phospholipid molecules. Strong supportive evidence for the mechanism is given by electron micrographs of TM formations.  相似文献   

13.
Alveolar type II cells: studies on the mode of release of lamellar bodies.   总被引:6,自引:0,他引:6  
There is increasing evidence that type II alveolar cells are capable of synthesizing surface active material like that obtained from the airways. However a number of problems remain to be solved before it can be stated conclusively that type II cells synthesize the surface active material of the terminal airspace. Among these problems is that of secretion. A number of previous studies have given evidence of the release of lamellar bodies by merocrine secretion. In this study morphologic evidence is presented which supports the view that secretion of lamellar bodies is accomplished by exocytosis. At the apical surface of type II cells, sites can be found where the limiting membrane of the lamellar body is clearly fused with the type II cell plasma membrane and an open channel exists between the contents of the lamellar body and the alveolar space. At these sites the lamellar contents extrude into the airspace with consequent loss of the highly compact organization of intracellular lamellar bodies. The intactness and continuity of the membranes can be traced for the full extent of the exocytosis site. Freeze-etch replicas of the membranes of type II cells show depressions which may represent the sites of discharged lamellae. In addition, tongue-like folds are seen which could be explained as the extensions of cytoplasm which surround the releasing lamellar body and which may flap over the exocytosis pit after discharge. Micrographs of the alveolar space show disorganized lamellar whorls which appear to be unravelling to produce tubular myelin. In view of the unusually large size and lipid composition of lamellar bodies, a mechanism involving hydration of mucopolysaccharide contents as an aid to expulsion of lamellar contents is suggested.  相似文献   

14.
Rodent and primate lung surfactant was studied at the ultrastructural level utilizing procedures that retained most of the carbohydrates and lipids in thin section. The three-dimensional aspect of tubular myelin surfactant was observed to be four, lipid bilayer membranes oriented at right angles so that in cross-section it was square. In longitudinal section it appeared as two parallel lipid bilayers. Inside the tubular myelin was a homogeneous matrix material that completely filled the tubule except for a small, central area. A single multilamellar body, after it expanded and rearranged lamellae to form tubular myelin surfactant, still retained its basic morphology so that it was possible to determine the number and orientation of bodies that comprised a given surfactant area. This enabled quantification of surfactant by serial sectioning. Each transformed multilamellar body was observed to contain from 2 to 13 groups of tubular myelin, oriented at angles within the transformed body. With three-dimensional understanding, many of the areas previously reported to be homogeneous were determined to actually be oblique cross or longitudinal sections through tubular myelin surfactant.Five distinct layers characterized tubular myelin surfactant: (1) Unexpanded layer—up to 63 recently secreted multilamellar bodies. (2) Formation layerp?aired lamellae expanding and rearranging to form tubules. (3) Mature layer—tubular myelin surfactant. (4) Air-surfactant interface layer—usually a single lipid bilayer which was the outermost layer of tubular myelin of from 1 to 12 transformed multilamellar bodies. (5) Degraded surfactant layer—lipid bilayer spheres were formed at the interface and degraded in the alveolar space.  相似文献   

15.
Lamellar inclusion bodies in the type II alveolar epithelial cell are believed to be involved in pulmonary surfactant production. However, it is not clear whether their role is that of synthesis, storage, or secretion. We have examined the phospholipid composition and fatty acid content of rabbit lung wash, lamellar bodies, mitochondria, and microsomes. Phosphatidylcholine and phosphatidylglycerol, the surface-active components of pulmonary surfactant, accounted for over 80% of the total phospholipid in lung wash and lamellar bodies but for only about 50% in mitochondria and microsomes. Phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin accounted for over 40% of the total in mitochondria and microsomes but for only 6% in lung wash and 15% in lamellar bodies. The fatty acid composition of lamellar body phosphatidylcholine was similar to that of lung wash, but different from that of mitochondria and microsomes, in containing palmitic acid as a major component with little stearic acid and few fatty acids of chain length greater than 18 carbon atoms. The biosynthesis of phosphatidylcholine and phosphatidylglycerol was examined in the mitochondrial, microsomal, and lamellar body fractions from rat lung. Cholinephosphotransferase was largely microsomal. The activity in the lamellar body fraction could be attributed to microsomal contamination. The activity of glycerolphosphate phosphatidyltransferase, however, was high in the lamellar body fraction, although it was highest in the mitochondria and was also active in the microsomes. These data suggest that the lamellar bodies are involved both in the storage of the lipid components of surfactant and in the synthesis of at least one of those components, phosphatidylglycerol.  相似文献   

16.
Ultrastructural, histochemical, and freeze-fracture studies of material recovered by bronchoalveolar lavage from patients with pulmonary alveolar proteinosis revealed four types (A, B, C, and D) of multilamellated structures (MS). Type A, the major component, consisted of concentric, trilaminar structures which were composed of two electron-dense layers and a central lucent layer (5.7-7.5 nm in overall width) alternating with wider (25-30 nm) electron-lucent intervening layers. Type B MS were formed by concentric lamellae with a 5-5.3-nm periodicity. Type C MS were composed of wavy, electron-dense lamellae with a 4-4.5-nm periodicity. Type D MS were conglomerated masses of intricately arranged double or triple electron-dense layers (7.5-13.5 nm wide) alternating with wider (30-40-nm) electron-lucent layers. The electron-dense lamellae of type A, type C, and type D MS were stained with ruthenium red, the Thiéry method, and concanavalin A, indicating the presence of carbohydrate components. Freeze-fracture studies revealed smooth inner and outer surfaces in type A MS, with the fracture planes passing through the central parts of the trilaminar structures; the intervening layers contained 10-nm particles, which probably are proteins. Type B MS had smooth surfaces, and type C MS had slightly particulate surfaces; while type D MS showed tubular or polygonal structures, 350 nm wide, with rows of particles 7-8 nm in diameter. It is concluded that type A and type D MS contain proteins and carbohydrates, probably in the form of glycoproteins, as well as phospholipids, and are related to tubular myelin. Type B and type C MS are considered to contain mainly phospholipids; type C MS are also considered to contain carbohydrates and to be related to lamellar bodies of type II alveolar epithelial cells.  相似文献   

17.
Centrifugation of isolated myelin on discontinuous sucrose gradients resulted in a separation into three bands and a pellet. The three bands were morphologically identical to myelin, whereas the pellet consisted primarily of vesicular membranes. These four fractions differed from one another in their lipid-to-protein ratios and in molar ratios of cholesterol:phospholipid:galactolipid. All of the fractions contained proteins typical of myelin, although the proportions of the proteins varied, with the pellet being the lowest in basic protein and proteolipid protein. High activity of 2′,3′-cyclic nucleotidase and low activity of cerebroside sulphotransferase further distinguished these fractions from the microsomal fraction. Distribution of radioactive sulphatide in the subfractions at 15 min after intracranial injection of radioactive sulphate indicated that newly-labelled sulphatide first appeared in the lipid-poor fractions, followed by the lipid-rich fractions; results of pulse-chase experiments also suggested this relationship. Several days or weeks after the injection of radioactive sulphate, most of the radioactive sulphatide was in the lipid-rich fractions.  相似文献   

18.
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.  相似文献   

19.
Lung development is associated with increases in specific phospholipids and proteins that function as critical pulmonary surfactant components. Attempts to characterize the pattern of surfactant development in fetal rat lungs have been hampered by the lack of a micromethod which will permit quantitative isolation of surface active components from small tissue specimens. As part of studies designed to elucidate the metabolic regulation of lung development in the rat, we developed sucrose density gradient centrifugation procedures to separate pulmonary phospholipids and proteins into a presumed surfactant (S) fraction and a residual (R) fraction. Electron microscopy of S pellets from mature fetuses identified predominant lamellar bodies and minimal contamination; incubation with 5 mM CaCl2 induced the appearance of tubular myelin figures, implying functional potential. This was confirmed by demonstrating low surface tension (less than 1 dyn/cm) in S, but not R, fractions at term gestation (21.5 days) and in 1-day-old neonatal lung isolates, based on dynamic measurements using the oscillating bubble technique. Surface activity was also high in the S pellets from fetuses at 20.5 days of gestation; however, at 19.5 days, minimum surface tension values of at least 19 dyne/cm were seen. These results correlated directly with biochemical analyses which indicated striking increases in three surfactant-associated proteins (SP-A, SP-B, and SP-C) after 19.5 days of gestation; a finding in agreement with previously reported data on the developmental increase of disaturated phosphatidylcholine in fetal rat lung. We conclude that isolation of S fraction components is valuable for demonstrating maturation of the fetal rat lung and may provide a useful tool for the study of regulatory mechanisms influencing surfactant production and function.  相似文献   

20.
The pneumocytes of the larva of Salamandra salamandra contain numerous lamellar bodies and their precursors: electron-dense bodies at various stages of development. Both lamellar bodies and electron-dense bodies occur inside the fluid-filled lung. The former are spherical or bell-shaped and possess concentrically arranged smooth membranes, 8 nm thick; the latter have paracrystalline cores composed of alternately oriented clear and dark striations (3.6–3.9 nm and 2.6–3.6 nm, respectively). On all sides such cores separate membranes, which assume a concentric orientation. No tubular myelin was observed in any phase of the transformation of lamellar bodies and electron-dense bodies into the surface lining layer. Fixation of the lungs of adult individuals with tannic acid-containing fixative visualized the surface lining layer, but not tubular myelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号