首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pattison DI  Hawkins CL  Davies MJ 《Biochemistry》2007,46(34):9853-9864
Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.  相似文献   

2.
Pattison DI  Davies MJ 《Biochemistry》2004,43(16):4799-4809
Hypohalous acids (HOX, X = Cl, Br) are produced by activated neutrophils, monocytes, eosinophils, and possibly macrophages. These oxidants react readily with biological molecules, with amino acids and proteins being major targets. Elevated levels of halogenated Tyr residues have been detected in proteins isolated from patients with atherosclerosis, asthma, and cystic fibrosis, implicating the production of HOX in these diseases. The quantitative significance of these findings requires knowledge of the kinetics of reaction of HOX with protein targets, and such data have not been previously available for HOBr. In this study, rate constants for reaction of HOBr with protein components have been determined. The second-order rate constants (22 degrees C, pH 7.4) for reaction with protein sites vary by 8 orders of magnitude and decrease in the order Cys > Trp approximately Met approximately His approximately alpha-amino > disulfide > Lys approximately Tyr > Arg > backbone amides > Gln/Asn. For most residues HOBr reacts 30-100 fold faster than HOCl, though Cys and Met residues are approximately 10-fold less reactive, and ring halogenation of Tyr is approximately 5000-fold faster. Thus, Tyr residues are more, and Cys and Met much less, important targets for HOBr than HOCl. Kinetic models have been developed to predict the targets of HOX attack on proteins and free amino acids. Overall, these results shed light on the mechanisms of cell damage induced by HOX and indicate, for example, that the 3-chloro-Tyr:3-bromo-Tyr ratio does not reflect the relative roles of HOCl and HOBr in disease processes.  相似文献   

3.
Thiol oxidation by hypochlorous acid and chloramines is a favorable reaction and may be responsible for alterations in regulatory or signaling pathways in cells exposed to neutrophil oxidants. In order to establish the mechanism for such changes, it is necessary to appreciate whether these oxidants are selective for different thiols as compared with other scavengers. We have measured rate constants for reactions of amino acid chloramines with a range of thiols, methionine, and ascorbate, using a combination of stopped-flow and competitive kinetics. For HOCl, rate constants are too fast to measure directly by our system and values relative to reduced glutathione were determined by competition with methionine. For taurine chloramine, the rate constants for reaction with 5-thio-2-nitrobenzoic acid, GSH, methionine, and ascorbate at pH 7.4 were 970, 115, 39, and 13 M(-1) s(-1), respectively. Values for 10 thiols varied by a factor of 20 and showed an inverse relationship to the pK(a) of the thiol group. Rate constants for chloramines of glycine and N-alpha-acetyl-lysine also showed these relationships. Rates increased with decreasing pH, suggesting a mechanism involving acid catalysis. For hypochlorous acid, rates of reaction with 5-thio-2-nitrobenzoic acid, GSH, cysteine, and most of the other thiols were very similar. Relative reactivities varied by less than 5 and there was no dependence on thiol pK(a). Chloramines have the potential to be selective for different cellular thiols depending on their pK(a). For HOCl to be selective, other factors must be important, or its reactions could be secondary to chloramine formation.  相似文献   

4.
Skaff O  Pattison DI  Davies MJ 《Biochemistry》2008,47(31):8237-8245
Plasmalogens, which contain a vinyl ether bond, are major phospholipids of the plasma membranes of endothelial and vascular smooth muscle cells and cardiac myocytes. These lipids, in contrast to other phospholipids, have been reported to be targets of HOCl/HOBr generated by myeloperoxidase, with elevated levels of the products of these reactions (alpha-chloro/alpha-bromo aldehydes and unsaturated lysophospholipids) having been detected in human atherosclerotic lesions. The reason(s) for the targeting of this lipid class, over other phospholipids, is poorly understood, and is examined here. It is shown that HOCl and HOBr react with a model vinyl ether (ethylene glycol vinyl ether) 200-300-fold faster ( k = 1.6 x 10 (3) and 3.5 x 10 (6) M (-1) s (-1), respectively) than with aliphatic alkenes (models of phospholipids). True plasmalogens react ca. 20-fold slower than the models. Chloramines and bromamines (from reaction of HOCl/HOBr with primary amines and alpha-amino groups) also react with vinyl ethers, unlike aliphatic alkenes, with k = 10 (-3)-10 (2) M (-1) s (-1) for chloramines (with the His side chain chloramine being the most reactive, k = 172 M (-1) s (-1)) and k = 10 (3)-10 (4) M (-1) s (-1) for bromamines. The bromamine rate constants are typically 10 (5)-10 (6) larger than those of the chloramines. Intermolecular vinyl ether oxidation by phospholipid headgroup bromamines can also occur. These kinetic data indicate that plasmalogens are significantly more susceptible to oxidation than the aliphatic alkenes of phospholipids, thereby rationalizing the detection of products from the former, but not the latter, in human atherosclerotic lesions.  相似文献   

5.
Neutrophil oxidants, including the myeloperoxidase products, HOCl and chloramines, have been linked to endothelial dysfunction in inflammatory diseases such as atherosclerosis. As they react preferentially with sulfur centers, thiol proteins are likely to be cellular targets. Our objectives were to establish whether there is selective protein oxidation in vascular endothelial cells treated with HOCl or chloramines, and to identify sensitive proteins. Cells were treated with HOCl, glycine chloramine and monochloramine, reversibly oxidized cysteines were labeled and separated by 1D or 2D SDS-PAGE, and proteins were characterized by mass spectrometry. Selective protein oxidation was observed, with chloramines and HOCl causing more changes than H(2)O(2). Cyclophilin A was one of the most sensitive targets, particularly with glycine chloramine. Cyclophilin A was also oxidized in Jurkat T cells where its identity was confirmed using a knockout cell line. The product was a mixed disulfide with glutathione, with glutathionylation at Cys-161. Glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxins and cofilin were also highly sensitive to HOCl/chloramines. Cyclophilins are becoming recognized as redox regulatory proteins, and glutathionylation is an important mechanism for redox regulation. Cells lacking Cyclophilin A showed more glutathionylation of other proteins than wild-type cells, suggesting that cyclophilin-regulated deglutathionylation could contribute to redox changes in HOCl/chloramine-exposed cells.  相似文献   

6.
Oxidants derived from inflammatory phagocytes compose a key element of the host immune defense system and can kill mammalian cells by one of several different mechanisms. In this report, we compare mechanisms of cell death induced in human B lymphoma cells by the inflammatory oxidants superoxide, H(2)O(2), and HOCl. The results indicate that the mode of cell death induced depends on the nature of the oxidant involved and the medium in which the cells are treated. When human Burkitt's lymphoma cells are exposed to superoxide anion, generated as a flux from xanthine and xanthine oxidase, the cells die by a non-apoptotic mechanism (pyknosis/necrosis) identical to that seen when cells are treated with a bolus of reagent H(2)O(2). Addition of superoxide dismutase has no effect, whereas catalase is completely protective, indicating that exogenously generated superoxide kills cells entirely through its dismutation into H(2)O(2). In contrast, cells treated in culture media with reagent HOCl die largely by apoptosis. HOCl-induced apoptosis is mediated by aminoacyl chloramines generated in the culture media and can be mimicked by treatment of cells with taurine chloramine or with long lived chloramines generated from modified Lys or Arg. The results suggest that in a physiological milieu in which O(2)(-) and H(2)O(2) are the main oxidants being formed, the principal form of cell death may be necrotic, and under inflammatory conditions in which HOCl is generated, apoptotic cell death may predominate.  相似文献   

7.
Pattison DI  Davies MJ 《Biochemistry》2006,45(26):8152-8162
Hypochlorous acid (HOCl) is a powerful oxidant generated from H(2)O(2) and Cl(-) by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that is implicated in a wide range of human diseases (e.g., atherosclerosis). Histamine and carnosine have been proposed as protective agents against such damage. However, as recent studies have shown that histidine-containing compounds readily form imidazole chloramines that can rapidly chlorinate other targets, it was hypothesized that similar reactions may occur with histamine and carnosine, leading to propagation, rather than prevention, of HOCl-mediated damage. In this study, the reactions of HOCl with histamine, histidine, carnosine, and other compounds containing imidazole and free amine sites were examined. In all cases, rapid formation (k, 1.6 x 10(5) M(-)(1) s(-)(1)) of imidazole chloramines was observed, followed by chlorine transfer to yield more stable, primary chloramines (R-NHCl). The rates of most of these secondary reactions are dependent upon substrate concentrations, consistent with intermolecular mechanisms (k, 10(3)-10(4) M(-)(1) s(-)(1)). However, for carnosine, the imidazole chloramine transfer rates are independent of the concentration, indicative of intramolecular processes (k, 0.6 s(-)(1)). High-performance liquid chromatography studies show that in all cases the resultant R-NHCl species can slowly chlorinate N-alpha-acetyl-Tyr. Thus, the current data indicate that the chloramines formed on the imidazole and free amine groups of these compounds can oxidize other target molecules but with limited efficiency, suggesting that histamine and particularly carnosine may be able to limit HOCl-mediated oxidation in vivo.  相似文献   

8.
Irreversible oxidation of reduced nicotinamide nucleotides by neutrophil-derived halogen oxidants (HOCl, chloramines, HOBr, etc.) is likely to be a highly lethal process, because of the essential role of NAD(P)H in important cell functions such as mitochondrial electron transport, and control of the cellular thiol redox state by NADPH-dependent glutathione reductase. Chloramines (chloramine-T, NH(2)Cl, etc.) and N-chloramides (N-chlorinated cyclopeptides) react with NADH to generate the same products as HOCl, i.e., pyridine chlorohydrins, as judged from characteristic changes in the NADH absorption spectrum. Compared with the fast oxidation of NADH by HOCl, k approximately 3 x 10(5) M(-1) s(-1) at pH 7.2, the oxidation by chloramines is about five orders of magnitude slower; that by chloramides is about four orders of magnitude slower. Apparent rate constants for oxidation of NADH by chloramines increase with increasing proton or buffer concentration, consistent with general acid catalysis, but oxidation by chloramides proceeds with pH-independent kinetics. In presence of iodide the oxidation of NADH by chloramines or chloramides is faster by at least two orders of magnitude; this is due to reaction of iodide with the N-halogen to give HOI/I(2), the most reactive and selective oxidant for NADH among HOX species. Quinuclidine derivatives (QN) like 3-chloroquinuclidine and quinine are capable of catalyzing the irreversible degradation of NADH by HOCl and by chloramines; QN(+)Cl, the chain carrier of the catalytic cycle, is even more reactive toward NADH than HOCl/ClO(-) at physiological pH. Oxidation of NADH by NH(2)Br proceeds by fast, but complex, biphasic kinetics. A compilation of rate constants for interactions of reactive halogen species with various substrates is presented and the concept of selective reactivity of N-halogens is discussed.  相似文献   

9.
Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC(O)NClR'), which can accumulate to high concentrations (>100 microM). Here we show that superoxide radicals catalyse the decomposition of chloramines and chloramides to reactive nitrogen-centred radicals, and increase the extent of protein fragmentation compared to that observed with either superoxide radicals or HOCl, alone. This synergistic action may be of significance at sites of inflammation, where both superoxide radicals and chloramines/chloramides are formed simultaneously.  相似文献   

10.
Hypochlorous acid (HOCl) and chloramines are produced by the neutrophil enzyme, myeloperoxidase. Both react readily with thiols, although chloramines differ from HOCl in discriminating between low molecular weight thiols on the basis of their pKa. Here, we have compared the reactivity of HOCl and taurine chloramine with thiol proteins by examining inactivation of creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). With both enzymes, loss of activity paralleled thiol loss. For CK both were complete at a 1:1 taurine chloramine:thiol mole ratio. For GAPDH each chloramine oxidized two thiols. Three times more HOCl than taurine chloramine was required for inactivation, indicating that HOCl is less thiol specific. Competition studies showed that thiols of CK were 4 times more reactive with taurine chloramine than thiols of GAPDH (rate constants of 1200 and 300 M-1s-1 respectively). These compare with 205 M-1s-1 for cysteine and are consistent with their lower pKa's. Both enzymes were equally susceptible to HOCl. GSH competed directly with the enzyme thiols for taurine chloramine and protected against oxidative inactivation. At lower GSH concentrations, mixed disulfides were formed. We propose that chloramines should preferentially attack proteins with low pKa thiols and this could be important in regulatory processes.  相似文献   

11.
The oxidative environment and protein damage   总被引:21,自引:0,他引:21  
Proteins are a major target for oxidants as a result of their abundance in biological systems, and their high rate constants for reaction. Kinetic data for a number of radicals and non-radical oxidants (e.g. singlet oxygen and hypochlorous acid) are consistent with proteins consuming the majority of these species generated within cells. Oxidation can occur at both the protein backbone and on the amino acid side-chains, with the ratio of attack dependent on a number of factors. With some oxidants, damage is limited and specific to certain residues, whereas other species, such as the hydroxyl radical, give rise to widespread, relatively non-specific damage. Some of the major oxidation pathways, and products formed, are reviewed. The latter include reactive species, such as peroxides, which can induce further oxidation and chain reactions (within proteins, and via damage transfer to other molecules) and stable products. Particular emphasis is given to the oxidation of methionine residues, as this species is readily oxidised by a wide range of oxidants. Some side-chain oxidation products, including methionine sulfoxide, can be employed as sensitive, specific, markers of oxidative damage. The product profile can, in some cases, provide valuable information on the species involved; selected examples of this approach are discussed. Most protein damage is non-repairable, and has deleterious consequences on protein structure and function; methionine sulfoxide formation can however be reversed in some circumstances. The major fate of oxidised proteins is catabolism by proteosomal and lysosomal pathways, but some materials appear to be poorly degraded and accumulate within cells. The accumulation of such damaged material may contribute to a range of human pathologies.  相似文献   

12.
Peroxiredoxin 2 (Prx2) is an abundant thiol protein that is readily oxidized in erythrocytes exposed to hydrogen peroxide. We investigated its reactivity in human erythrocytes with hypochlorous acid (HOCl) and chloramines, relevant oxidants in inflammation. Prx2 was oxidized to a disulfide-linked dimer by HOCl, glycine chloramine (GlyCl), and monochloramine (NH2Cl) in a dose-dependent manner. In the absence of added glucose, Prx2 and GSH showed similar sensitivities. Second-order rate constants for the reactions of Prx2 with NH2Cl and GlyCl were 1.5 × 104 and 8 M−1 s−1, respectively. The NH2Cl value is 10 times higher than that for GSH, whereas Prx2 is 30 times less sensitive than GSH to GlyCl. Thus, the relative sensitivity of Prx2 to GlyCl is greater in the erythrocyte. Oxidation of erythrocyte Prx2 and GSH was less in the presence of glucose, probably because of recycling. High doses of NH2Cl resulted in incomplete regeneration of reduced Prx2, suggesting impairment of the recycling mechanism. Our results show that, although HOCl and chloramines are less selective than H2O2, they nevertheless oxidize Prx2. Exposure to these inflammatory oxidants will result in Prx2 oxidation and could compromise the erythrocyte's ability to resist damaging oxidative insult.  相似文献   

13.
Hypochlorous acid (HOCl) and N-chloramines are produced by myeloperoxidase (MPO) as part of the immune response to destroy invading pathogens. However, MPO also plays a detrimental role in inflammatory pathologies, including atherosclerosis, as inappropriate production of oxidants, including HOCl and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity toward oxidants compared to the analogous sulfur compounds, and are known to be efficient scavengers of HOCl and other hypohalous acids produced by MPO. In this study, we examined the efficacy of a number of sulfur and selenium compounds to scavenge a range of biologically relevant N-chloramines and oxidants produced by both isolated MPO and activated neutrophils and characterized the resulting selenium-derived oxidation products in each case. A dose-dependent decrease in the concentration of each N-chloramine was observed on addition of the sulfur compounds (cysteine, methionine) and selenium compounds (selenomethionine, methylselenocysteine, 1,4-anhydro-4-seleno-L-talitol, 1,5-anhydro-5-selenogulitol) studied. In general, selenomethionine was the most reactive with N-chloramines (k2 0.8–3.4×103 M–1 s–1) with 1,5-anhydro-5-selenogulitol and 1,4-anhydro-4-seleno-L-talitol (k2 1.1–6.8×102 M–1 s–1) showing lower reactivity. This resulted in the formation of the respective selenoxides as the primary oxidation products. The selenium compounds demonstrated greater ability to remove protein N-chloramines compared to the analogous sulfur compounds. These reactions may have implications for preventing cellular damage in vivo, particularly under chronic inflammatory conditions.  相似文献   

14.
《Luminescence》2002,17(3):158-164
Although most amino acids readily react with hypochlorous acid (HOCl), only the reaction involving tryptophan (Trp) produces a measurable chemiluminescence (CL). Most of this luminescence takes place after total consumption of HOCl when the process is carried out in an excess of Trp. The quantum yield of the process is relatively low (2 × 10?8 Einstein/mol HOCl reacted). The luminescence is attributed to free radical‐mediated secondary reactions of the initially produced chloramines. This is supported by experiments showing that the chloramines produced when HOCl reacts with alanine are able to induce Trp chemiluminescence, and that this luminescence is partially quenched by free radical scavengers. The spectral changes and the effect of pH upon the observed luminescence are compatible with light emission from products produced in the free radical oxidation of Trp. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Histamine is stored in granules of mast cells and basophils and released by inflammatory mediators. It has the potential to intercept some of the HOCl generated by the neutrophil enzyme, myeloperoxidase, to produce histamine chloramine. We have measured rate constants for reactions of histamine chloramine with methionine, ascorbate, and GSH at pH 7.4, of 91 M(-1)s(-1), 195 M(-1)s(-1), and 721 M(-1)s(-1), respectively. With low molecular weight thiols, the reaction was with the thiolate and rates increased exponentially with decreasing thiol group pK(a). Comparing rate constants for different chloramines reacting with ascorbate or a particular thiol anion, these were higher when there was less negative charge in the vicinity of the chloramine group. Histamine chloramine was the most reactive among biologically relevant chloramines. Consumption of histamine chloramine and oxidation of intracellular GSH were examined for human fibroblasts. At nontoxic doses, GSH loss over 10 min was slightly greater than that with HOCl, but the cellular uptake of histamine chloramine was 5-10-fold less. With histamine chloramine, GSSG was a minor product and most of the GSH was converted to mixed disulfides with proteins. HOCl gave a different profile of GSH oxidation products, with significantly less GSSG and mixed disulfide formation. There was irreversible oxidation and losses to the medium, as observed with HOCl and other cell types. Thus, histamine chloramine shows high preference for thiols both in isolation and in cells, and in this respect is more selective than HOCl.  相似文献   

16.
13C-NMR with 13C-enriched taurine [( 13C]taurine) has been utilized to study the formation and reactions of N-chlorotaurine in solution and in human cells. Taurine reacts instantaneously with HOCl at pH 7.0 to form N-chlorotaurine, which is stable in solution by itself. In the presence of alpha-amino acids, a chlorine transfer reaction taken place to produce N-chloroamino acids, which quickly convert to the corresponding aldehydes. [13C]Taurine was incubated with human neutrophils and with cultured human lymphoblastoid cells and 13C-NMR spectra of the whole cell mixtures were acquired in order to examine the formation of N-chlorotaurine from reaction between taurine and the endogenous HOCl produced by myeloperoxidase-catalyzed reactions (Zgliczynski, J.M., et al. (1968) Eur. J. Biochem. 4, 540; Weiss, S.J., et al. (1982) J. Clin. Invest. 70, 598). The presence of N-chlorotaurine in the cells was not detected on the 13C-NMR spectra. On the other hand, N-chloro[13C]taurine incubated with the cells was found to be converted to taurine, which must have been produced by a chlorine transfer reaction of the N-chlorotaurine to other cellular components such as amino acids, peptides or proteins. A 13C-NMR study of taurine uptake in human lymphoblastoid cells indicated that taurine is incorporated into a freely mobile intracellular pool. These results suggest that the presence of abundant taurine in a freely mobile intracellular pool may serve as a buffer in preventing oxidative damage to the cells from attacks by HOCl or other oxidants.  相似文献   

17.
A spectrophotometric assay for chlorine-containing compounds.   总被引:3,自引:0,他引:3  
Determinations of hypochlorous acid and chloramine compounds are important in a number of areas. Several techniques are now available for such analyses, but most require unstable reagents and/or multiple steps in the analytical procedure. We have developed a simple, one-step spectrophotometric assay for reactive chlorine-containing compounds involving the oxidation of ascorbic acid by hypochlorous acid or chloramines. There is no interference from other nonhalide oxidants such as hydrogen peroxide or hypothiocyanous acid. Because small amounts of ascorbic acid will not damage biological materials, this method also allows continuous measurements of the generation of chlorine-containing compounds by activated neutrophils. This simple assay permits precise analysis of as little as 1 nmol of HOCl.  相似文献   

18.
Production of hydrogen peroxide and secretion of myeloperoxidase by stimulated neutrophils resulted in myeloperoxidase-catalyzed oxidation of chloride to hypochlorous acid (HOCl), the reaction of HOCl with taurine to yield taurine monochloramine (TauNHCl), and accumulation of TauNHCl in the extracellular medium. When erythrocytes were present, the yield of TauNHCl was lower as the result of uptake of TauNHCl into erythrocytes. The zwitterion taurine was not taken up, but the anion TauNHCl and other anionic oxidants including taurine dichloramine (TauNCl2) and L-alanine chloramines were transported into erythrocytes by the anion-transport system. Oxidation of intracellular components such as glutathione (GSH) by taurine chloramines resulted in reduction of the chloramines and trapping of taurine within erythrocytes. At high oxidant:erythrocyte ratios, TauNHCl also oxidized hemoglobin (Hb) and depleted ATP, but caused little lysis. TauNCl2 was much more effective as a lytic agent. At low oxidant:erythrocyte ratios, the chloramines caused net loss of GSH when no glucose was provided, but Hb was not oxidized and GSH content returned to normal when glucose was added. Therefore, anionic chloramines may mediate oxidative toxicity when the neutrophil:erythrocyte ratio is high. Under more physiologic conditions, chlorination of taurine by neutrophils and the uptake and reduction of TauNHCl by erythrocytes prevents accumulation of oxidants and may protect blood cells, plasma components, and tissues against oxidative toxicity.  相似文献   

19.
Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-selective reagent 5-iodoacetamidofluorescein; by reaction with Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid); and by detecting interchain tubulin disulfides by Western blot under nonreducing conditions. Whereas HOCl induced both cysteine and methionine oxidation of tubulin, chloramines were predominantly cysteine oxidants. Cysteine oxidation of tubulin, rather than methionine oxidation, was associated with loss of microtubule polymerization activity, and treatment of oxidized tubulin with disulfide reducing agents restored a considerable portion of the polymerization activity that was lost after oxidation. By comparing the reactivity of hypochlorous acid and chloramines with the previously characterized oxidants, peroxynitrite and the nitroxyl donor Angeli's salt, we have identified tubulin thiol oxidation, not methionine oxidation or tyrosine nitration, as a common outcome responsible for decreased polymerization activity.  相似文献   

20.
Kulcharyk PA  Heinecke JW 《Biochemistry》2001,40(12):3648-3656
Phagocytic oxidants have been implicated in tissue injury and oncogenesis, and their pathophysiological role in modifying nucleobases and amino acids has been widely explored. Their ability to cross-link proteins and DNA, however, has not been considered, even though reversible DNA-protein interactions are key to gene expression and to DNA replication and repair. In the current studies, we show that hypochlorous acid (HOCl), generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes, cross-links single-stranded DNA-binding protein (SSB) to single-stranded oligonucleotides. Exposure of SSB and a homopolymer of radiolabeled thymidine (dT(40)) to HOCl resulted in the formation of a radiolabeled band with slower mobility than the free oligonucleotide, as determined by denaturing polyacrylamide gel electrophoresis. This radiolabeled band did not appear if the reaction mixture was treated with protease or nuclease, indicating that it represents a covalent complex of DNA and protein. Oligonucleotides of adenosine and cytidine behaved similarly to the thymidine oligonucleotide, demonstrating that they are also capable of participating in the cross-linking reaction. The covalent complex of radiolabeled dT(40) and SSB was also generated by chloramines and the complete myeloperoxidase-hydrogen peroxide-chloride system. The enzymatic reaction required each component of the system and was inhibited by heme poisons and chloride-free conditions, implicating myeloperoxidase and HOCl. DNA-protein cross-links were generated in Escherichia coli exposed to HOCl, suggesting that double-stranded DNA is also a target for the reaction. These results indicate that long-lived chloramines and HOCl generated by myeloperoxidase can generate covalent DNA-protein cross-links that may contribute to the mutagenic and cytotoxic effects of phagocytes on microbial pathogens and host tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号