首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have introduced the gene for human growth hormone (hGH) into PC12 cells, a rat pheochromocytoma-derived cell line with neuronal characteristics, and have isolated stable cell lines that express this protein. hGH is stored within the cells in membrane-bounded vesicles that are indistinguishable from the endogenous catecholaminergic synaptic vesicles. When the transfected cells are stimulated by carbachol or direct depolarization, they release norepinephrine and hGH with parallel kinetics. Treatment of the transfected cells with nerve growth factor results in a twofold increase in the amounts of hGH stored in and secreted from the cells. Not all proteins are packaged into the synaptic vesicles, since the rate of release of laminin, a soluble secreted protein endogenous to PC12 cells, is not stimulated by carbachol. This neuronal cell line therefore possesses at least two distinct pathways for secretion and can selectively package a foreign endocrine hormone into the regulated pathway.  相似文献   

2.
The several cell types in mouse and rat rectosigmoid colon have been examined with light and electron microscopic methods for localizing and characterizing complex carbohydrates. Mucous cells, also termed vacuolated cells, and goblet cells comprised most of the deep crypt epithelium in both species, and absorptive columnar cells and goblet cells mainly populated the more superficial epithelium of the upper crypts and main lumen. Occasional tuft cells and enteroendocrine cells were also encountered. Transitional cells structurally intermediate between mucous cells and absorptive cells contained granules characteristic of mucous cells and vesicles like those of columnar absorptive cells. These intermediate cells supported the concept of replacement of mucous by absorptive cells through transformation of mucous into absorptive cells. The intermediate cells also contained numerous lysosomes often in apparent fusion with mucous granules, indicating crinophagic disposal of mucous granules as a mechanism in the cell transformation. Glycoconjugate in absorptive cell vesicles resembled that coating the apical plasmalemma and appeared to represent the source of the glycocalyx of the brush border. Complex carbohydrate in these vesicles differed cytochemically from that of the mucous cell granules, which release their content into the crypt lumen. The absorptive cell vesicles, therefore, constitute an organelle distinct from the mucous cell granules rather than an atrophic form of the latter in a more mature cell. Goblet cells differed in failing to transform morphologically with age but changed in the cytochemical characteristic of their secretion during migration up the crypts. Terminal N-acetylglucosamine residues diminished, while terminal sialic acid-galactose dimers increased during the upward migration, indicating activation of glycosyl transferase synthesis in relation to goblet cell maturation. Glycoconjugate in secretion of mucous cell granules differed markedly from that in goblet cell granules, and content of both organelles differed from that of absorptive cell vesicles. However, secretion in mucous cell granules appeared generally similar for mice and rats with minor exceptions, and secretion in goblets of mice generally resembled that in goblets of rats. Cells interpreted tentatively as Kulchitsky cells stained for high content of fucose with the Ulex europeus I lectin. Globoid leukocytes infiltrating the epithelium of the rat but not the mouse rectosigmoid colon resembled globoid leukocytes in rat tracheal epithelium and, like the latter, appeared to derive from mast cells.  相似文献   

3.
Exocytosis is the release of intracellular vesicular contents directly to the cell exterior after fusion of the vesicular and plasma membranes. It is generally accepted as the process by which transmitters and hormones are released from neurons and neurosecretory cells. There is overwhelming biochemical evidence that exocytosis is the mechanism by which catecholamines are released from adrenal chromaffin cells. With the exception of the hamster, however, there is little ultrastructural evidence to support such a mechanism. We have used a modified in vitro tannic-acid method to visualize exocytosis by transmission electron microscopy in intact and saponin-permeabilized bovine chromaffin cells. When cells are exposed to tannic-acid-containing medium, the content of vesicles involved in exocytosis is coagulated in situ as the vesicle opens to the exterior. Numerous exocytotic profiles were observed. The exposed vesicle contents appeared more granular than those of vesicles in the cell interior. Tannic acid also made the plasma membrane more distinct. Small holes were apparent in the plasma membrane of saponin-treated cells, with little disruption of underlying cytoplasmic structure. Furthermore, when these cells were stimulated with calcium, exocytosis was evident only at regions of intact plasma membrane, not at the holes. Parallel measurements of secretion showed no secretion in the presence of tannic acid. Pretreatment with tannic acid prevented subsequent secretion by intact cells and markedly reduced that of permeabilized cells, indicating a probable change in the nature of the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Recent experiments using DNA transfection have shown that secretory proteins in AtT-20 cells are sorted into two biochemically distinct secretory pathways. These two pathways differ in the temporal regulation of exocytosis. Proteins secreted by the regulated pathway are stored in dense-core granules until release is stimulated by secretagogues. In contrast, proteins secreted by the constitutive pathway are exported continuously, without storage. It is not known whether there are mechanisms to segregate regulated and constitutive secretory vesicles spatially. In this study, we examined the site of insertion of constitutive vesicles and compared it with that of regulated secretory granules. Regulated granules accumulate at tips of processes in these cells. To determine whether constitutively externalized membrane proteins are inserted into plasma membrane at the cell body or at process tips, AtT-20 cells were infected with ts-O45, a temperature-sensitive mutant of vesicular stomatitis virus in which transport of the surface glycoprotein G is conditionally blocked in the ER. After switching to the permissive temperature, insertion of G protein was detected at the cell body, not at process tips. Targeting of constitutive and regulated secretory vesicles to distinct areas of the plasma membrane appears to be mediated by microtubules. We found that while disruption of microtubules by colchicine had no effect on constitutive secretion, it completely blocked the accumulation of regulated granules at special release sites. Colchicine also affected the proper packaging of regulated secretory proteins. We conclude that regulated and constitutive secretory vesicles are targeted to different areas of the plasma membrane, most probably by differential interactions with microtubules. These results imply that regulated secretory granules may have unique membrane receptors for selective attachment to microtubules.  相似文献   

6.
The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeast Saccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother–daughter connection during cell cycle progression.  相似文献   

7.
Simpson RJ  Jensen SS  Lim JW 《Proteomics》2008,8(19):4083-4099
Exosomes are 40-100 nm membrane vesicles of endocytic origin secreted by most cell types in vitro. Recent studies have shown that exosomes are also found in vivo in body fluids such as blood, urine, amniotic fluid, malignant ascites, bronchoalveolar lavage fluid, synovial fluid, and breast milk. While the biological function of exosomes is still unclear, they can mediate communication between cells, facilitating processes such as antigen presentation and in trans signaling to neighboring cells. Exosome-like vesicles identified in Drosophila (referred to as argosomes) may be potential vehicles for the spread of morphogens in epithelia. The advent of current MS-based proteomic technologies has contributed significantly to our understanding of the molecular composition of exosomes. In addition to a common set of membrane and cytosolic proteins, it is becoming increasingly apparent that exosomes harbor distinct subsets of proteins that may be linked to cell-type associated functions. The secretion of exosomes by tumor cells and their implication in the transport and propagation of infectious cargo such as prions and retroviruses such as HIV suggest their participation in pathological situations. Interestingly, the recent observation that exosomes contain both mRNA and microRNA, which can be transferred to another cell, and be functional in that new environment, is an exciting new development in the unraveling exosome saga. The present review aims to summarize the physical properties that define exosomes as specific cell-type secreted membrane vesicles.  相似文献   

8.
The rat pheochromocytoma cell line PC12 contains two distinct pathways of protein secretion. Proteins secreted via the regulated pathway are stored in secretory vesicles and exocytosed only in response to a specific signal, whereas proteins secreted via the constitutive pathway are exported continuously. Analysis of regulated secretion of a heterologous protein in this system often relies on comparison of secretion rates with those of endogenous proteins known to be secreted via the constitutive route. In order to improve these controls, we have evaluated a number of secreted enzymes, selected for the sensitivity and convenience of their assays, as transgenic markers for the constitutive pathway. We show that both human-secreted placental alkaline phosphatase (SEAP) and bacterial β-lactamase operate in this way in transfected PC12 cells. In contrast, transfected human tissue plasminogen activator (tPA) is shown to be sorted to the regulated pathway.  相似文献   

9.
In rat brain and cultured neuroendocrine PC12 cells, Glut3 is localized at the cell surface and, also, in a distinct population of homogenous synaptic-like vesicles. Glut3-containing vesicles co-purify with "classical" synaptic vesicles, but can be separated from the latter by sucrose gradient centrifugation. Unlike classical synaptic vesicles, Glut3-containing vesicles possess a high level of aminopeptidase activity, which has been identified as aminopeptidase B. This enzyme has recently been shown to be a marker of the secretory pathway in PC12 cells (Balogh, A., Cadel, S., Foulon, T., Picart, R., Der Garabedian, A., Rousselet, A., Tougard, C., and Cohen, P. (1998) J. Cell Sci. 111, 161-169). We, therefore, conclude that Glut3 is targeted to secretory vesicles in both neurons and PC12 cells.  相似文献   

10.
Synaptotagmin (syt) I is thought to act as a Ca2+ sensor that regulates neuronal exocytosis. Fifteen additional isoforms of syt have been identified, but their functions are less well understood. Here, we used PC12 cells to test the idea that different isoforms of syt impart cells with distinct metal (i.e., Ca2+, Ba2+, and Sr2+) requirements for secretion. These cells express syt's I and IX (syt IX sometimes referred to as syt V), which have low apparent metal affinities, at much higher levels than syt VII, which we show has a relatively high apparent affinity for metals. We found that syt I and VII partially colocalize on large dense core vesicles and that upregulation of syt VII produces a concomitant increase in the divalent cation sensitivity of catecholamine release from PC12 cells. Furthermore, RNA interference-mediated knockdown of endogenous syt VII reduced the metal sensitivity of release. These data support the hypothesis that the complement of syt's expressed by a cell, in conjunction with their metal affinity, determines the divalent cation sensitivity of exocytosis.  相似文献   

11.
《The Journal of cell biology》1986,103(6):2511-2527
An intrinsic membrane protein of brain synaptic vesicles with Mr 38,000 (p38, synaptophysin) has recently been partially characterized (Jahn, R., W. Schiebler, C. Ouimet, and P. Greengard, 1985, Proc. Natl. Acad. Sci. USA, 83:4137-4141; Wiedenmann, B., and W. W. Franke, 1985, Cell, 41:1017-1028). We have now studied the presence of p38 in a variety of tissues by light and electron microscopy immunocytochemistry and by immunochemistry. Our results indicate that, within the nervous system, p38, like the neuron-specific phosphoprotein synapsin I, is present in virtually all nerve terminals and is selectively associated with small synaptic vesicles (SSVs). No p38 was detectable on large dense-core vesicles (LDCVs). p38 and synapsin I were found to be present in similar concentrations throughout the brain. Outside the nervous system, p38 was found in a variety of neuroendocrine cells, but not in any other cell type. In neuroendocrine cells p38 was localized on a pleiomorphic population of small, smooth-surfaced vesicles, which were interspersed among secretory granules and concentrated in the Golgi area, but not on the secretory granules themselves. Immunoblot analysis of endocrine tissues and cell lines revealed a band with a mobility slightly different from that of neuronal p38. This difference was attributable to a difference in glycosylation. The finding that p38, like synapsin I, is a component of SSVs of virtually all neurons, but not of LDCVs, supports the idea that SSVs and LDCVs are organelles of two distinct pathways for regulated neuronal secretion. In addition, our results indicate the presence in a variety of neuroendocrine cells of an endomembrane system, which is related to SSVs of neurons but is distinct from secretory granules.  相似文献   

12.
The stress status of the apoptotic cell can promote phenotypic changes that have important consequences on the immunogenicity of the dying cell. Autophagy is one of the biological processes activated in response to a stressful condition. It is an important mediator of intercellular communications, both by regulating the unconventional secretion of molecules, including interleukin 1β, and by regulating the extracellular release of ATP from early stage apoptotic cells. Additionally, autophagic components can be released in a caspase‐dependent manner by serum‐starved human endothelial cells that have engaged apoptotic and autophagic processes. The nature and the components of the extracellular vesicles released by dying autophagic cells are not known. In this study, we have identified extracellular membrane vesicles that are released by human endothelial cells undergoing apoptosis and autophagy, and characterized their biochemical, ultrastructural, morphological properties as well as their proteome. These extracellular vesicles differ from classical apoptotic bodies because they do not contain nucleus components and are released independently of Rho‐associated, coiled‐coil containing protein kinase 1 activation. Instead, they are enriched with autophagosomes and mitochondria and convey various danger signals, including ATP, suggesting that they could be involved in the modulation of innate immunity.  相似文献   

13.
Graminaceous plants release mugineic acid family phytosiderophores (MAs) to acquire iron from the soil. Here, we show that deoxymugineic acid (DMA) secretion from rice roots fluctuates throughout the day, and that vesicles accumulate in roots before MAs secretion. We developed transgenic rice plants that express rice nicotianamine (NA) synthase (NAS) 2 (OsNAS2) fused to synthetic green fluorescent protein (sGFP) under the control of its own promoter. In root cells, OsNAS2–sGFP fluorescence was observed in a dot‐like pattern, moving dynamically within the cell. This suggests that these vesicles are involved in NA and DMA biosynthesis. A tyrosine motif and a di‐leucine motif, which have been reported to be involved in cellular transport, are conserved in all identified NAS proteins in plants. OsNAS2 mutated in the tyrosine motif showed NAS activity and was localized to the vesicles; however, these vesicles stuck together and did not move. On the other hand, OsNAS2 mutated in the di‐leucine motif lost NAS activity and did not localize to these vesicles. The amounts of NA and DMA produced and the amount of DMA secreted by OsNAS2–sGFP plants were significantly higher than in non‐transformants and domain‐mutated lines, suggesting that OsNAS2–sGFP, but not the mutated forms, was functional in vivo. Overall, the localization of NAS to vesicles and the transport of these vesicles are crucial steps in NA synthesis, leading to DMA synthesis and secretion in rice.  相似文献   

14.
The fatty acid-acylated enzyme pullulanase is normally found in either of two locations in Escherichia coli, depending on whether or not the producing strains also express the genes specifically required for the second step in pullulanase secretion. When they are expressed, the enzyme is localized to the cell surface, while in their absence, it is directed to an unidentified location in the cell envelope which, upon lysis, forms vesicles whose density is intermediate between those of outer and cytoplasmic membrane vesicles. In order to test the role of the putative lipoprotein sorting signal, Asp2, in pullulanase sorting and secretion, the structural gene (pulA) was subjected to site-directed mutagenesis. Replacement of the Asp2 residue by Asn, Glu, or Ser caused the enzyme to fractionate with outer membrane-derived vesicles rather than with intermediate density vesicles from E. coli cells devoid of pullulanase secretion genes. A pronounced secretion defect was observed in a two-step secretion assay in which the first (sec gene-dependent) and second (pul gene-dependent) secretion steps were uncoupled. We propose that the Asp residue increases the efficiency of pullulanase secretion by allowing the enzyme to be initially sorted to a region of the cell envelope wherein most of the pullulase-specific secretion factors are located.  相似文献   

15.
Early detection of resistance to platinum-based therapy is critical for improving the treatment of ovarian cancers. We have previously found that increased expression of annexin A3 is a mechanism for platinum resistance in ovarian cancer cells. Here we demonstrate that annexin A3 can be detected in the culture medium of ovarian cancer cells, particularly these cells that express high levels of annexin A3. Levels of annexin A3 were then determined in sera from ovarian cancer patients using an enzyme-linked immunosorbent assay. Compared with those from normal donors, sera from ovarian cancer patients contain significantly higher levels of annexin A3. Furthermore, serum levels of annexin A3 were significantly higher in platinum-resistant patients than in platinum-sensitive patients. To gain insight into the mechanism of secretion, the ovarian cancer cell lines were examined using both transmission electron microscopy and immunoelectron microscopy. Compared with parent cells, there are significantly more vesicles in the cytoplasm of ovarian cancer cells that express high levels of annexin A3, and at least some vesicles are annexin A3-positive. Moreover, some vesicles appear to be fused with the cell membrane, suggesting that annexin A3 secretion may be associated with exocytosis and the release of exosomes. This is supported by our observation that ovarian cancer cells expressing higher levels of annexin A3 released increased numbers of exosomes. Furthermore, annexin A3 can be detected in exosomes released from cisplatin-resistant cells (SKOV3/Cis) by immunoblotting and immunoelectron microscopy.  相似文献   

16.
J H Walent  B W Porter  T F Martin 《Cell》1992,70(5):765-775
The regulated secretory pathway is activated by elevated cytoplasmic Ca2+; however, the components mediating Ca2+ regulation have not been identified. In semi-intact neuroendocrine cells, Ca(2+)-activated secretion is ATP- and cytosol protein-dependent. We have identified a novel brain protein, p145, as a cytosolic factor that reconstitutes Ca(2+)-activated secretion in two neuroendocrine cell types. The protein is a dimer of 145 kd subunits, exhibits Ca(2+)-dependent interaction with a hydrophobic matrix, and binds phospholipid vesicles, suggesting a membrane-associated function. A p145-specific antibody inhibits the reconstitution of Ca(2+)-activated secretion by cytosol, indicating an essential role for p145. The restricted expression of p145 in tissues exhibiting a regulated secretory pathway suggests a key role for this protein in the transduction of Ca2+ signals into vectorial membrane fusion events.  相似文献   

17.
Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.  相似文献   

18.
We have isolated and characterized outer membrane vesicles (OMVs) from Francisella. Transport of effector molecules through secretion systems is a major mechanism by which Francisella tularensis alters the extracellular proteome and interacts with the host during infection. Outer membrane vesicles produced by Francisella were examined using TEM and AFM and found to be 43-125 nm in size, representing another potential mechanism for altering the extracellular environment. A proteomic analysis (LC-MS/MS) of OMVs from F. novicida and F. philomiragia identified 416 (F. novicida) and 238 (F. philomiragia) different proteins, demonstrating that OMVs are an important contributor to the extracellular proteome. Many of the identified OMV proteins have a demonstrated role in Francisella pathogenesis. Biochemical assays demonstrated that Francisella OMVs possess acid phosphatase and hemolytic activities that may affect host cells during infection, and are cytotoxic toward murine macrophages in cell culture. OMVs have been previously used as a human vaccine against Neisseria meningitidis . We hypothesized that Francisella OMVs could be useful as a novel Francisella vaccine. Vaccinated BALB/C mice challenged with up to 50 LD50 of Francisella showed statistically significant protection when compared to control mice. In the context of these new findings, we discuss the relevance of OMVs in Francisella pathogenesis as well as their potential use as a vaccine.  相似文献   

19.
A culture technique for the in vitro growth and differentiation of antennal lobe cells from the honeybee, Apis mellifera, is described and the ultrastructure of the growing cells is analysed. Two types of cell are present in the cultures and from their morphology and ultrastructure they can be identified as glial cells and neurones. The neurones have a granular cytoplasm, abundant endoplasmic reticulum and a small, densely stained nucleus. They produce long processes with varicosities that contain dense-core and clear vesicles. In contrast the glial cells have clear cytoplasm, little endoplasmic reticulum and a distinct cytoskeletal organisation. These cells produce short, flat processes that spread over the surface of the culture dish. Although a number of cell contacts have been identified in the cultures no synapses have yet been seen. These cultures provide a good in vitro model for an analysis of the interactions between cells derived from the antennal lobe of the honey bee.  相似文献   

20.
Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular communication or “homing pigeons”. Extracellular vesicle shuttling is able to actively modulate the tumor microenvironment and can partake in tumor dissemination. In various diseases, including cancer, levels of extracellular vesicle secretion are altered resulting in different amounts and/or profiles of detectable vesicular cargo molecules and these distinct content profiles are currently being evaluated as biomarkers. Apart from their potential as blood-derived containers of specific biomarkers, the transfer of extracellular vesicles to surrounding cells also appears to be involved in the propagation of phenotypic traits. These interesting properties have put extracellular vesicles into the focus of many recent studies.Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing issue in cancer treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition on extracellular vesicles and cutting-edge techniques to visualise the trafficking of extracellular vesicles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号