首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epithelial cell scattering encompasses the dissolution of intercellular junctions, cell-cell dissociation, cell spreading, and motility. The Rac1 and ARF6 GTPases have been shown to regulate one or more of these aforementioned processes. In fact, activated Rac1 has been shown to promote cell-cell adhesion as well as to enhance cell motility, leading to conflicting reports on the effect of Rac1 activation on epithelial cell motility. In this study, we have examined the activation profiles of endogenous Rac1 and ARF6 during the sequential stages of epithelial cell scattering. Using Madin-Darby canine kidney cells treated with hepatocyte growth factor/scatter factor or cell lines stably expressing activated v-Src, we show that Rac1 and ARF6 exhibit distinct activation profiles during cell scattering. We have found that an initial ARF6-dependent decrease in the levels of Rac1-GTP is necessary to induce cell-cell dissociation. This is followed by a steady increase in Rac1 and ARF6 activation and cell migration. In sum, this study documents the progression of ARF6 and Rac1 activities during epithelial cell scattering.  相似文献   

2.
We describe a novel role for the ARF6 GTPase in the regulation of adherens junction (AJ) turnover in MDCK epithelial cells. Expression of a GTPase-defective ARF6 mutant, ARF6(Q67L), led to a loss of AJs and ruffling of the lateral plasma membrane via mechanisms that were mutually exclusive. ARF6-GTP-induced AJ disassembly did not require actin remodeling, but was dependent on the internalization of E-cadherin into the cytoplasm via vesicle transport. ARF6 activation was accompanied by increased migratory potential, and treatment of cells with hepatocyte growth factor (HGF) induced the activation of endogenous ARF6. The effect of ARF6(Q67L) on AJs was specific since ARF6 activation did not perturb tight junction assembly or cell polarity. In contrast, dominant-negative ARF6, ARF6(T27N), localized to AJs and its expression blocked cell migration and HGF-induced internalization of cadherin-based junctional components into the cytoplasm. Finally, we show that ARF6 exerts its role downstream of v-Src activation during the disassembly of AJs. These findings document an essential role for ARF6- regulated membrane traffic in AJ disassembly and epithelial cell migration.  相似文献   

3.
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of colonies followed by disruption of cell–cell junctions and subsequent cell scattering. In Madin–Darby canine kidney cells, HGF/SF-induced motility involves actin reorganization mediated by Ras, but whether Ras and downstream signals regulate the breakdown of intercellular adhesions has not been established. Both HGF/SF and V12Ras induced the loss of the adherens junction proteins E-cadherin and β-catenin from intercellular junctions during cell spreading, and the HGF/SF response was blocked by dominant-negative N17Ras. Desmosomes and tight junctions were regulated separately from adherens junctions, because they were not disrupted by V12Ras. MAP kinase, phosphatidylinositide 3-kinase (PI 3-kinase), and Rac were required downstream of Ras, because loss of adherens junctions was blocked by the inhibitors PD098059 and LY294002 or by dominant-inhibitory mutants of MAP kinase kinase 1 or Rac1. All of these inhibitors also prevented HGF/SF-induced cell scattering. Interestingly, activated Raf or the activated p110α subunit of PI 3-kinase alone did not induce disruption of adherens junctions. These results indicate that activation of both MAP kinase and PI 3-kinase by Ras is required for adherens junction disassembly and that this is essential for the motile response to HGF/SF.  相似文献   

4.
Localized activation of Rho GTPases is essential for multiple cellular functions, including cytokinesis and formation and maintenance of cell–cell junctions. Although MgcRacGAP (Mgc) is required for spatially confined RhoA-GTP at the equatorial cortex of dividing cells, both the target specificity of Mgc''s GAP activity and the involvement of phosphorylation of Mgc at Ser-386 are controversial. In addition, Mgc''s function at cell–cell junctions remains unclear. Here, using gastrula-stage Xenopus laevis embryos as a model system, we examine Mgc''s role in regulating localized RhoA-GTP and Rac1-GTP in the intact vertebrate epithelium. We show that Mgc''s GAP activity spatially restricts accumulation of both RhoA-GTP and Rac1-GTP in epithelial cells—RhoA at the cleavage furrow and RhoA and Rac1 at cell–cell junctions. Phosphorylation at Ser-386 does not switch the specificity of Mgc''s GAP activity and is not required for successful cytokinesis. Furthermore, Mgc regulates adherens junction but not tight junction structure, and the ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Together these results indicate that Mgc''s GAP activity down-regulates the active populations of RhoA and Rac1 at localized regions of epithelial cells and is necessary for successful cytokinesis and cell–cell junction structure.  相似文献   

5.
Rhofamily GTPase signaling regulates actin cytoskeleton and junctionalcomplex assembly. Our previous work showed that RhoA signaling protectstight junctions from damage during ATP depletion. Here, we examinedwhether RhoA GTPase signaling protects adherens junction assemblyduring ATP depletion. Despite specific RhoA signaling- and ATPdepletion-induced effects on adherens junction assembly, RhoA signalingdid not alter adherens junction disassembly rates during ATP depletion.This shows that RhoA signaling specifically protects tight junctionsfrom damage during ATP depletion. Rac1 GTPase signaling also regulatesadherens junction assembly and therefore may regulate adherens junctionassembly during ATP depletion. Indeed, we found that Rac1 signalingprotects adherens junctions from damage during ATP depletion. Adherensjunctions are regulated by various GTPases, including RhoA and Rac1,but adherens junctions are specifically protected by Rac1 signaling.

  相似文献   

6.
7.
Epithelial cells disassemble their adherens junctions and "scatter" during processes such as tumor cell invasion as well as some stages of embryonic development. Control of actin polymerization is a powerful mechanism for regulating the strength of cell-cell adhesion. In this regard, studies have shown that sustained activation of Rac1, a well-known regulator of actin dynamics, results in the accumulation of polymerized actin at cell-cell contacts in epithelia and an increase in E-cadherin-mediated adhesion. Here we show that active Rac1 is ubiquitinated and subject to proteasome-mediated degradation during the early stages of epithelial cell scattering. These findings delineate a mechanism for the down-regulation of Rac1 in the disassembly of epithelial cell-cell contacts and support the emerging theme that UPS-mediated degradation of the Rho family GTPases may serve as an efficient mechanism for GTPase deactivation in the sustained presence of Dbl-exchange factors.  相似文献   

8.
Listeria monocytogenes is a food-borne pathogen able to invade non-phagocytic cells. InlA, a L. monocytogenes surface protein, interacts with human E-cadherin to promote bacterial entry. L. monocytogenes internalization is a dynamic process involving co-ordinated actin cytoskeleton rearrangements and host cell membrane remodelling at the site of bacterial attachment. Interaction between E-cadherin and catenins is required to promote Listeria entry, and for the establishment of adherens junctions in epithelial cells. Although several molecular factors promoting E-cadherin-mediated Listeria internalization have been identified, the proteins regulating the transient actin polymerization required at the bacterial entry site are unknown. Here we show that the Arp2/3 complex acts as an actin nucleator during the InlA/E-cadherin-dependent internalization. Using a variety of approaches including siRNA, expression of dominant negative derivatives and pharmacological inhibitors, we demonstrate the crucial role of cortactin in the activation of the Arp2/3 complex during InlA-mediated entry. We also show the requirement of the small GTPase Rac1 and that of Src-tyrosine kinase activity to promote Listeria internalization. Together, these data suggest a model in which Src tyrosine kinase and Rac1 promote recruitment of cortactin and activation of Arp2/3 at Listeria entry site, mimicking events that occur during adherens junction formation.  相似文献   

9.
Epithelial cell migration and morphogenesis require dynamic remodeling of the actin cytoskeleton and cell-cell adhesion complexes. Numerous studies in cell culture and in model organisms have demonstrated the small GTPase Rac to be a critical regulator of these processes; however, little is known about Rac function in the morphogenic movements that drive epithelial tube formation. Here, we use the embryonic salivary glands of Drosophila to understand the role of Rac in epithelial tube morphogenesis. We show that inhibition of Rac function, either through loss of function mutations or dominant-negative mutations, disrupts salivary gland invagination and posterior migration. In contrast, constitutive activation of Rac induces motile behavior and subsequent cell death. We further show that Rac regulation of salivary gland morphogenesis occurs through modulation of cell-cell adhesion mediated by the E-cadherin/beta-catenin complex and that shibire, the Drosophila homolog of dynamin, functions downstream of Rac in regulating beta-catenin localization during gland morphogenesis. Our results demonstrate that regulation of cadherin-based adherens junctions by Rac is critical for salivary gland morphogenesis and that this regulation occurs through dynamin-mediated endocytosis.  相似文献   

10.
Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis.  相似文献   

11.
12.
Lin CY  Lin CJ  Chen KH  Wu JC  Huang SH  Wang SM 《FEBS letters》2006,580(13):3042-3050
Tumor-associated macrophages play an important role in tumor progression, but whether they exert a tumor-progressive effect remains controversial. Here, we demonstrated that activated macrophage-conditioned medium (AMCM) obtained from RAW macrophages (RAW/AMCM) induced epithelial-mesenchymal transition (EMT) and stimulated the migratory and invasive activities of HepG2 cells, whereas control conditioned media had no effect. Epithelial-cadherin (E-cadherin) and beta-catenin staining patterns were altered at the adherens junctions by RAW/AMCM treatment, with an approximately 50% decrease in E-cadherin and beta-catenin in the cell membrane. Importantly, levels of beta-catenin-associated E-cadherin were also decreased. Following RAW/AMCM treatment, enhanced activation of c-Src was seen prior to increased tyrosine phosphorylation of beta-catenin, and this led to the destabilization of adherens junctions. Pretreatment of HepG2 cells with the Src kinase inhibitor, PP2, completely abolished the effects of RAW/AMCM on the EMT, migration, invasion, and expression and association of E-cadherin and beta-catenin. AMCMs obtained from human THP-1 monocytes and mouse peritoneal macrophages also caused disassembly of the adherens junctions and migration of HepG2 cells. Furthermore, inhibition of the epidermal growth factor receptor (EGFR) with gefitinib partially prevented the downregulation of E-cadherin and beta-catenin at the adherens junctions and migration behavior induced by RAW/AMCM. Our results suggest that activated macrophages have a tumor-progressive effect on HepG2 cells which involves the c-Src- and EGFR-dependent signaling cascades.  相似文献   

13.
ARF6 and Rac1 are small GTPases known to regulate remodelling of the actin cytoskeleton. Here, we demonstrate that these monomeric G proteins are sequentially activated when HEK 293 cells expressing the angiotensin type 1 receptor (AT(1)R) are stimulated with angiotensin II (Ang II). After receptor activation, ARF6 and Rac1 transiently form a complex. Their association is, at least in part, direct and dependent on the nature of the nucleotide bound to both small G proteins. ARF6-GTP preferentially interacts with Rac1-GDP. AT(1)R expressing HEK293 cells ruffle, form membrane protrusions, and migrate in response to agonist treatment. ARF6, but not ARF1, depletion using small interfering RNAs recapitulates the ruffling and migratory phenotype observed after Ang II treatment. These results suggest that ARF6 depletion or Ang II treatment are functionally equivalent and point to a role for endogenous ARF6 as an inhibitor of Rac1 activity. Taken together, our findings reveal a novel function of endogenously expressed ARF6 and demonstrate that by interacting with Rac1, this small GTPase is a central regulator of the signaling pathways leading to actin remodeling.  相似文献   

14.
Clostridium sordellii lethal toxin (LT) is a glucosyltransferase which inactivates small GTPases from the Rho and Ras families. In the present work, we studied the effects of two variants, LT82 and LT9048, on the integrity of epithelial cell barrier using polarized MCCD (Mouse Cortical Collecting Duct) and MDCK (Madin-Darby Canine Kidney) cells. Our results demonstrate for the first time that LTs have very limited effects on tight junctions. In contrast, we show that both toxins modified the paracellular permeability within 2-4 h. Concomitantly LT82 and LT9048 induced a disorganization of basolateral actin filaments, without modifying apical actin. Both toxins mainly altered adherens junctions by removing E-cadherin-catenin complexes from the membrane to the cytosol. Similar effects on adherens junctions have been observed with other toxins, which directly or indirectly depolymerize actin. Thereby, Rac, a common substrate of both LTs, might play a central role in LT-dependent adherens junction alteration. Here, we show that adherens junction perturbation induced by LTs results neither from a direct effect of toxins on adherens junction proteins nor from an actin-independent Rac pathway, but rather from a Rac-dependent disorganization of basolateral actin cytoskeleton. This further supports that a dynamic equilibrium of cortical actin filaments is essential for functional E-cadherin organization in epithelia.  相似文献   

15.
Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.  相似文献   

16.
Tubules are the building blocks of epithelial organs and form in response to cues derived from morphogens such as hepatocyte growth factor (HGF). Relatively little is known about signaling pathways that orchestrate the cellular behaviors that constitute tubule development. Here, using three-dimensional cell cultures of Madin-Darby canine kidney cells, we show that the ARF6 GTPase is a critical determinant of tubule initiation in response to HGF. ARF6 is transiently activated during tubulogenesis and perturbing the ARF6 GTP/GDP cycle by inducible expression of ARF6 mutants defective in GTP binding or hydrolysis, inhibits the development of mature tubules. Further, we show that activation of ARF6 is necessary and sufficient to initiate tubule extension. The effect of ARF6 on tubule initiation is two-fold. First, ARF6 regulates the subcellular distribution of the GTPase, Rac1, to tubule extensions. Second, ARF6-induced ERK activation regulates Rac1 activation during tubule initiation through the expression of the receptor for urokinase type plasminogen activator. Thus, we have identified a cellular apparatus downstream of ARF6 activation, which regulates membrane and cytoskeleton remodeling necessary for the early stages of tubule development.  相似文献   

17.
18.
Regulation of ezrin and other ERM proteins is not completely understood, but the involvement of Rho GTPases seems crucial. In this work, expression plasmids encoding full-length, deleted or truncated ezrin were constructed and coexpressed with Rac1 GTPase in HeLa human epithelial cells in order to elucidate the mechanisms of ezrin activation and function. We observed induction of actin stress fiber formation by ezrin constructs harboring the F-actin binding site but devoid of sequences required for intra- or intermolecular binding. Stress fiber-inducing ezrin mutants were localized in adherens junctions containing N-cadherin but no E-cadherin, and also colocalized with F-actin in stress fibers. This localization required the activity of Rac1 and phosphatidylinositol-4-phosphate 5-kinase and involved RhoA. We suggest that localization of ezrin in adherens junctions is regulated by Rac in a manner involving PIPK.  相似文献   

19.
Migration of epithelial cells is essential for tissue morphogenesis, wound healing, and metastasis of epithelial tumors. Here we show that ARNO, a guanine nucleotide exchange factor for ADP-ribosylation factor (ARF) GTPases, induces Madin-Darby canine kidney epithelial cells to develop broad lamellipodia, to separate from neighboring cells, and to exhibit a dramatic increase in migratory behavior. This transition requires ARNO catalytic activity, which we show leads to enhanced activation of endogenous ARF6, but not ARF1, using a novel pulldown assay. We further demonstrate that expression of ARNO leads to increased activation of endogenous Rac1, and that Rac activation is required for ARNO-induced cell motility. Finally, ARNO-induced activation of ARF6 also results in increased activation of phospholipase D (PLD), and inhibition of PLD activity also inhibits motility. However, inhibition of PLD does not prevent activation of Rac. Together, these data suggest that ARF6 activation stimulates two distinct signaling pathways, one leading to Rac activation, the other to changes in membrane phospholipid composition, and that both pathways are required for cell motility.  相似文献   

20.
Rho family proteins are essential for the formation of adherens junctions, which are required for the maintenance of epithelial integrity. Activated Rac and the Rac exchange factor Tiam1 have been shown to promote the formation of adherens junctions and the accompanying induction of an epithelioid phenotype in a number of cell lines. Here we show that Madin-Darby canine kidney II cells in which Tiam1 was down-regulated using short interfering RNA disassembled their cadherin-based adhesions and acquired a flattened, migratory, and mesenchymal morphology. In addition, the expression of E1A in mesenchymal V12Ras-transformed Madin-Darby canine kidney II cells led simultaneously to the up-regulation of the Tiam1 protein, the activation of Rac, the formation of cadherin-based adhesions, and reversion to an epithelial phenotype. This finding suggests that E1A induces an epithelial morphology through the up-regulation of Tiam1 and, thereby, the activation of Rac and the formation of cadherin-based adhesions. Indeed, we found that E1A is able to induce an epithelial-like morphology accompanied by the formation of cadherin-based adhesions only in wild-type but not in Tiam1-deficient primary mouse embryonic fibroblasts. These studies indicate that the Rac activator Tiam1 is essential for the formation as well as the maintenance of cadherin-based adhesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号