首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroscopic ion channel current is the summation of the stochastic records of individual channel currents and therefore relates to their statistical properties. As a consequence of this relationship, it may be possible to derive certain statistical properties of single channel records or even generate some estimates of the records themselves from the macroscopic current when the direct measurement of single channel currents is not applicable. We present a procedure for generating the single channel records of an ion channel from its macroscopic current when the stochastic process of channel gating has the following two properties: (I) the open duration is independent of the time of opening event and has a single exponential probability density function (pdf), (II) all the channels have the same probability to open at time t. The application of this procedure is considered for cases where direct measurement of single channel records is difficult or impossible. First, the probability density function (pdf) of opening events, a statistical property of single channel records, is derived from the normalized macroscopic current and mean channel open duration. Second, it is shown that under the conditions (I) and (II), a non-stationary Markov model can represent the stochastic process of channel gating. Third, the non-stationary Markov model is calibrated using the results of the first step. The non-stationary formulation increases the model ability to generate a variety of different single channel records compared to common stationary Markov models. The model is then used to generate single channel records and to obtain other statistical properties of the records. Experimental single channel records of inactivating BK potassium channels are used to evaluate how accurately this procedure reconstructs measured single channel sweeps.  相似文献   

2.
Interaction between sodium channels in mouse neuroblastoma cells   总被引:2,自引:0,他引:2  
Single sodium channels in mouse neuroblastoma cells (N1E 115) were studied in cell-attached patches. During a series of consecutive responses to depolarizing pulses, records with and without channel opening were seen to form clusters rather than appearing randomly. The probability of finding open channels on a record seemed to increase with increasing number of channel openings. The open times of channels became shorter with increasing closed time interval measured between consecutive channel openings. Overlapping openings showed a voltage-dependent open time, in contrast to single openings which had voltage-independent open time. On the basis of these observations interaction between neighbouring sodium channels is suggested.Abbreviations RP resting potential - OT channel open time  相似文献   

3.
Middendorf et al. (Middendorf, T.R., R.W. Aldrich, and D.A. Baylor. 2000. J. Gen. Physiol. 116:227-252) showed that ultraviolet light decreases the current through cloned cyclic nucleotide-gated channels from bovine retina activated by high concentrations of cGMP. Here we probe the mechanism of the current reduction. The channels' open probability before irradiation, P(o)(0), determined the sign of the change in current amplitude that occurred upon irradiation. UV always decreased the current through channels with high initial open probabilities [P(o)(0) > 0.3]. Manipulations that promoted channel opening antagonized the current reduction by UV. In contrast, UV always increased the current through channels with low initial open probabilities [P(o)(0) < or = 0.02], and the magnitude of the current increase varied inversely with P(o)(0). The dual effects of UV on channel currents and the correlation of both effects with P(o)(0) suggest that the channels contain two distinct classes of UV target residues whose photochemical modification exerts opposing effects on channel gating. We present a simple model based on this idea that accounts quantitatively for the UV effects on the currents and provides estimates for the photochemical quantum yields and free energy costs of modifying the UV targets. Simulations indicate that UV modification may be used to produce and quantify large changes in channel gating energetics in regimes where the associated changes in open probability are not measurable by existing techniques.  相似文献   

4.
A general stochastic theory is presented for analysis of current records of a patch containing an arbitrary number (N) of independent homologous channels in the steady-state. We give the "basic theorem" that at the instant of any open (or shut) transition of a channel, the other N-1 channels are located in each state with a probability equal to those in the steady-state, if enough transitions are observed. Using the "basic theorem", we derived: (a) the time-dependent open and shut frequencies after a definite type of transition, and (b) the probability density functions (pdf) of the duration of any period between two successive transitions. Briefly, the main results obtained were: (1) The time-dependent open (or shut) transition frequency after every shut (or open) transition at t = 0 in an N-channel patch, fJSh,Op(t)(N) (or fJOp,Sh(t)(N)), is the same as that of a one-channel patch except for the value of the constant. (2) In the all-shut (or all-open) period of a patch, the average duration of the period is 1/N, and the slowest exponential decay constant contained in the pdf is N times those of a single channel patch, respectively. (3) An example calculation for small N showed that the stochastic properties of a single channel can be obtained even when N is uncertain, if the channel open probability is small and exponential decay constants are separated. (4) When the channels are in equilibrium, the pdf of duration of every type of period in the patch is described by a sum of exponential terms with positive coefficients. This also holds for fJSh,Op(t)(N) and fJOp,Sh(t)(N).  相似文献   

5.
There is little information about the mechanisms by which G-protein-coupled receptors gate ion channels although many ionotropic receptors are well studied. We have investigated gating of the muscarinic cationic channel, which mediates the excitatory effect of acetylcholine in smooth muscles, and proposed a scheme consisting of four pairs of closed and open states. Channel kinetics appeared to be the same in cell-attached or outside-out patches whether the channel was activated by carbachol application or by intracellular dialysis with GTPgammaS. Since in the latter case G-proteins are permanently active, it is concluded that the cationic channel is the major determinant of its own gating, similarly to the K(ACh) channel (Ivanova-Nikolova, T.T., and G.E. Breitwieser. 1997. J. Gen. Physiol. 109:245-253). Analysis of adjacent-state dwell times revealed connections between the states that showed features conserved among many other ligand-gated ion channels (e.g., nAChR, BK(Ca) channel). Open probability (P(O)) of the cationic channel was increased by membrane depolarization consistent with the prominent U-shaped I-V relationship of the muscarinic whole-cell current at negative potentials. Membrane potential affected transitions within each closed-open state pair but had little effect on transitions between pairs; thus, the latter are likely to be caused by interactions of the channel with its ligands, e.g., Ca(2+) and Galphao-GTP. Channel activity was highly heterogeneous, as was evident from the prominent cycling behavior when P(O) was measured over 5-s intervals. This was related to the variable frequency of openings (as in the K(ACh) channel) and, especially, to the number of long openings between consecutive long shuttings. Analysis of the underlying Markov chain in terms of probabilities allowed us to evaluate the contribution of each open state to the integral current (from shortest to longest open state: 0.1, 3, 24, and 73%) as P(O) increased 525-fold in three stages.  相似文献   

6.
CRAC (calcium release-activated Ca(2+)) channels attain an extremely high selectivity for Ca(2+) from the blockade of monovalent cation permeation by Ca(2+) within the pore. In this study we have exploited the blockade by Ca(2+) to examine the size of the CRAC channel pore, its unitary conductance for monovalent cations, and channel gating properties. The permeation of a series of methylammonium compounds under divalent cation-free conditions indicates a minimum pore diameter of 3.9 A. Extracellular Ca(2+) blocks monovalent flux in a manner consistent with a single intrapore site having an effective K(i) of 20 microM at -110 mV. Block increases with hyperpolarization, but declines below -100 mV, most likely due to permeation of Ca(2+). Analysis of monovalent current noise induced by increasing levels of block by extracellular Ca(2+) indicates an open probability (P(o)) of approximately 0.8. By extrapolating the variance/mean current ratio to the condition of full blockade (P(o) = 0), we estimate a unitary conductance of approximately 0.7 pS for Na(+), or three to fourfold higher than previous estimates. Removal of extracellular Ca(2+) causes the monovalent current to decline over tens of seconds, a process termed depotentiation. The declining current appears to result from a reduction in the number of active channels without a change in their high open probability. Similarly, low concentrations of 2-APB that enhance I(CRAC) increase the number of active channels while open probability remains constant. We conclude that the slow regulation of whole-cell CRAC current by store depletion, extracellular Ca(2+), and 2-APB involves the stepwise recruitment of silent channels to a high open-probability gating mode.  相似文献   

7.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl- channel that is regulated by protein kinase A and cytosolic nucleotides. Previously, Sheppard and Welsh reported that the sulfonylureas glibenclamide and tolbutamide reduced CFTR whole cell currents. The aim of this study was to quantify the effects of tolbutamide on CFTR gating in excised membrane patches containing multiple channels. We chose tolbutamide because weak (i.e., fast-type) open channel blockers introduce brief events into multichannel recordings that can be readily quantified by current fluctuation analysis. Inspection of current records revealed that the addition of tolbutamide reduced the apparent single-channel current amplitude and increased the open-channel noise, as expected for a fast-type open channel blocker. The apparent decrease in unitary current amplitude provides a measure of open probability within a burst (P0 Burst), and the resulting concentration-response relationship was described by a simple Michaelis-Menten inhibition function. The concentration of tolbutamide causing a 50% reduction of Po Burst (540 +/- 20 microM) was similar to the concentration producing a 50% inhibition of short-circuit current across T84 colonic epithelial cell monolayers (400 +/- 20 microM). Changes in CFTR gating were then quantified by analyzing current fluctuations. Tolbutamide caused a high-frequency Lorentzian (corner frequency, fc > 300 Hz) to appear in the power density spectrum. The fc of this Lorentzian component increased as a linear function of tolbutamide concentration, as expected for a pseudo-first-order open-blocked mechanism and yielded estimates of the on rate (koff = 2.8 +/- 0.3 microM-1 s-1), the off rate (kon = 1210 +/- 225 s-1), and the dissociation constant (KD = 430 +/- 80 microM). Based on these observations, we propose that there is a bimolecular interaction between tolbutamide and CFTR, causing open channel blockade.  相似文献   

8.
We studied the effect of H(2)O(2) on the gating behavior of large-conductance Ca(2+)-sensitive voltage-dependent K(+) (K(V,Ca)) channels. We recorded potassium currents from single skeletal muscle channels incorporated into bilayers or using macropatches of Xenopus laevis oocytes membranes expressing the human Slowpoke (hSlo) alpha-subunit. Exposure of the intracellular side of K(V,Ca) channels to H(2)O(2) (4-23 mM) leads to a time-dependent decrease of the open probability (P(o)) without affecting the unitary conductance. H(2)O(2) did not affect channel activity when added to the extracellular side. These results provide evidence for an intracellular site(s) of H(2)O(2) action. Desferrioxamine (60 microM) and cysteine (1 mM) completely inhibited the effect of H(2)O(2), indicating that the decrease in P(o) was mediated by hydroxyl radicals. The reducing agent dithiothreitol (DTT) could not fully reverse the effect of H(2)O(2). However, DTT did completely reverse the decrease in P(o) induced by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid). The incomplete recovery of K(V,Ca) channel activity promoted by DTT suggests that H(2)O(2) treatment must be modifying other amino acid residues, e.g., as methionine or tryptophan, besides cysteine. Noise analysis of macroscopic currents in Xenopus oocytes expressing hSlo channels showed that H(2)O(2) induced a decrease in current mediated by a decrease both in the number of active channels and P(o).  相似文献   

9.
The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.  相似文献   

10.
Na(+) entry across the apical membranes of many absorptive epithelia is determined by the number (N) and open probability (P(o)) of epithelial sodium channels (ENaC). Previous results showed that the H3 domain of syntaxin-1A (S1A) binds to ENaC to reduce N, supporting a role for S1A in the regulation of ENaC trafficking. The aim of this study was to determine whether S1A-induced reductions in ENaC current also result from interactions between cell surface ENaC and S1A that alter ENaC P(o). Injection of a glutathione S-transferase (GST)-H3 S1A fusion protein into ENaC-expressing Xenopus oocytes inhibited whole cell Na(+) current (I(Na)) by 33% within 5 min. This effect was dose-dependent, with a K(i) of 7 ng/microl (approximately 200 nm). In contrast, injection of GST alone or a H3 domain-deleted GST-S1A fusion protein had no effect on I(Na). In cell-attached patch clamp experiments, GST-H3 acutely decreased ENaC P(o) by 30%, whereas GST-S1A Delta H3 was without effect. Further analysis revealed that ENaC mean closed time was significantly prolonged by S1A. Interestingly, GST-H3 had no effect on channel activity of an ENaC pore mutant that constitutively gates open (P(o) approximately equal 1.0), supporting the idea that S1A alters the closed state of ENaC and indicating that the actions of S1A on ENaC trafficking and gating can be separated experimentally. This study indicates that, in addition to a primary effect on ENaC trafficking, S1A interacts with cell surface ENaC to rapidly decrease channel gating. This rapid effect of S1A may modulate Na(+) entry rate during rapid increases in ENaC N.  相似文献   

11.
The conductance, number, and mean open time of ion channels can be estimated from fluctuations in membrane current. To examine potential errors associated with fluctuation analysis, we simulated ensemble currents and estimated single channel properties. The number (N) and amplitude (i) of the underlying single channels were estimated using nonstationary fluctuation analysis, while mean open time was estimated using covariance and spectral analysis. Both excessive filtering and the analysis of segments of current that were too brief led to underestimates of i and overestimates of N. Setting the low-pass cut-off frequency of the filter to greater than five times the inverse of the effective mean channel open time (burst duration) and analyzing segments of current that were at least 80 times the effective mean channel open time reduced the errors to < 2%. With excessive filtering, Butterworth filtering gave up to 10% less error in estimating i and N than Bessel filtering. Estimates of mean open time obtained from the time constant of decay of the covariance, tau obs, at low open probabilities (Po) were much less sensitive to filtering than estimates of i and N. Extrapolating plots of tau obs versus mean current to the ordinate provided a method to estimate mean open time from data obtained at higher Po, where tau obs no longer represents mean open time. Bessel filtering gave the least error when estimating tau obs from the decay of the covariance function, and Butterworth filtering gave the least error when estimating tau obs from spectral density functions.  相似文献   

12.
Macroscopic ion channel current can be derived by summation of the stochastic records of individual channel currents. In this paper, we present two probability density functions of single channel records that can uniquely determine the macroscopic current regardless of other statistical properties of records or the stochastic model of channel gating (presented often with stationary Markov models). We show that H(t), probability density function of channel opening events (introduced explicitly in this paper), and D(t), probability density function of the open duration (sometimes has named dwell time distribution as well), determine the normalized macroscopic current, G(t), through G(t) = P(t) - H(t) * Q(t) where P(t) is the cumulative density function of H(t), Q(t) is the cumulative density function of D(t), * is the symbol of convolution integral and G(t) is the macroscopic current divided by the amplitude of single channel current and the number of single channel sweeps. Compared to other equations for the macroscopic current, here the macroscopic current is expressed only in terms of the statistical properties of single channel current and not the stochastic model of ion channel gating or a conditioned form of macroscopic current. Single channel currents of an inactivating BK channel were used to validate this relationship experimentally too. In this paper, we used median filters as they can remove the unwanted noise without smoothing the transitions between open and closed states (compare to low pass filters). This filtering leads to more accurate measurement of transition times and less amount of missed events.  相似文献   

13.
ROMK channels are responsible for K(+) secretion in kidney. The activity of ROMK is regulated by intracellular pH (pH(i)) with acidification causing channel closure (effective pK(a) approximately 6.9). Recently, we and others reported that a direct interaction of the channels with phosphatidyl-4,5-bisphosphate (PIP(2)) is critical for opening of the inwardly rectifying K(+) channels. Here, we investigate the relationship between the mechanisms for regulation of ROMK by PIP(2) and by pH(i). We find that disruption of PIP(2)-ROMK1 interaction not only decreases single-channel open probability (P(o)) but gives rise to a ROMK1 subconductance state. This state has an increased sensitivity to intracellular protons (effective pK(a) shifted to pH approximately 7.8), such that the subconductance channels are relatively quiescent at physiological pH(i). Open probability for the subconductance channels can then be increased by intracellular alkalinization to supra-physiological pH. This increase in P(o) for the subconductance channels by alkalinization is not associated with an increase in PIP(2)-channel interaction. Thus, direct interaction with PIP(2) is critical for ROMK1 to open at full conductance. Disruption of this interaction increases pH(i) sensitivity for the channels via emergence of the subconductance state. The control of open probability of ROMK1 by pH(i) occurs via a mechanism distinct from the regulation by PIP(2).  相似文献   

14.
Neutralization of the aspartate near the selectivity filter in the GYGD pore sequence (D292N) of the voltage- and Ca(2+)-activated K+ channel (MaxiK, BKCa) does not prevent conduction like the corresponding mutation in Shaker channel, but profoundly affects major biophysical properties of the channel (Haug, T., D. Sigg, S. Ciani, L. Toro, E. Stefani, and R. Olcese. 2004. J. Gen. Physiol. 124:173-184). Upon depolarizations, the D292N mutant elicited mostly gating current, followed by small or no ionic current, at voltages where the wild-type hSlo channel displayed robust ionic current. In fact, while the voltage dependence of the gating current was not significantly affected by the mutation, the overall activation curve was shifted by approximately 20 mV toward more depolarized potentials. Several lines of evidence suggest that the mutation prevents population of certain open states that in the wild type lead to high open probability. The activation curves of WT and D292N can both be fitted to the sum of two Boltzmann distributions with identical slope factors and half activation potentials, just by changing their relative amplitudes. The steeper and more negative component of the activation curve was drastically reduced by the D292N mutation (from 0.65 to 0.30), suggesting that the population of open states that occurs early in the activation pathway is reduced. Furthermore, the slow component of the gating current, which has been suggested to reflect transitions from closed to open states, was greatly reduced in D292N channels. The D292N mutation also affected the limiting open probability: at 0 mV, the limiting open probability dropped from approximately 0.5 for the wild-type channel to 0.06 in D292N (in 1 mM [Ca2+]i). In addition to these effects on gating charge and open probability, as already described in Part I, the D292N mutation introduces a approximately 40% reduction of outward single channel conductance, as well as a strong outward rectification.  相似文献   

15.
Phosphorylation of Ion channels   总被引:29,自引:0,他引:29  
The introduction of highly specific reagents such as enzymes and inhibitors directly into living cells has proven to be a powerful tool in studying the modulation of cellular activity by protein phosphorylation. The use of exogenous kinases can be thought of as a pharmacological approach: this demonstrates that phosphorylation can produce modulation, but does not address the question of whether the cell actually uses this mechanism under normal physiological conditions. The complementary approach, the introduction of highly specific inhibitors such as R subunit or PKI, does ask whether endogenous kinase activity is necessary for a given physiological response. Together these two approaches have provided rather compelling evidence that cAMP-dependent and calcium/phospholipid-dependent protein phosphorylations can regulate membrane excitability. In several cases single-channel analysis has allowed the demonstration that an ion channel itself or something very close to the channel is the phosphorylation target, and it seems reasonable to assume that this will also be the case for many if not all of the other systems described above. Have any general principles emerged from the results to date? Certainly it seems clear that protein phosphorylation regulates not one but many classes of ion channels. As summarized in the Table, different channels can be modulated in different cells, some channels are activated while others are inhibited, and in some cells more than one channel is subject to modulation by phosphorylation. The list in the Table is probably not yet complete, and indeed it is not inconceivable that all ion channels can under appropriate conditions be regulated by phosphorylation. What aspect of channel function is altered by phosphorylation? The total membrane current, I, carried by a particular species of ion channel is given by Npi, where N is the number of active channels in the membrane, p is the probability that an individual channel will be open, and i is the single-channel current. In principle a change in I, the quantity measured in whole cell experiments, could be caused by a change in any one (or more) of the parameters, N, p or i (see Fig. 1). In the two cases in which single-channel measurements have allowed this question to be investigated, changes in N (Shuster et al., 1985) and p (Ewald et al., 1985) have been observed. Here again it seems unlikely that any one mechanism operates in all cases, and it would not be surprising to find that phosphorylation of some other channel results in a change in i.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Current records from voltage-clamped membrane patches containing two batrachotoxin-modified sodium channels were analyzed to determine whether these channels are identical and independent. In most two-channel patches, the experimentally observed probabilities that zero, one, or two channels are open differ from the binomial distribution, demonstrating that the two channels are nonidentical or nonindependent or both. From the same current records, we also determined the rate for the transition from two open channels to one open channel and for the transition from one open channel to zero open channels. These data are consistent with closing rates for the two channels that are equal and independent. Both probability and closing rate data can be fit by a model wherein the channels are identical, the closing rates are independent, and the opening rate is greater when the other channel is closed than when it is open. The implications of this model for analyzing noise spectra and current variance are examined.  相似文献   

17.
Endogenous serine proteases have been reported to control the reabsorption of Na(+) by kidney- and lung-derived epithelial cells via stimulation of electrogenic Na(+) transport mediated by the epithelial Na(+) channel (ENaC). In this study we investigated the effects of aprotinin on ENaC single channel properties using transepithelial fluctuation analysis in the amphibian kidney epithelium, A6. Aprotinin caused a time- and concentration-dependent inhibition (84 +/- 10.5%) in the amiloride-sensitive sodium transport (I(Na)) with a time constant of 18 min and half maximal inhibition constant of 1 microM. Analysis of amiloride analogue blocker-induced fluctuations in I(Na) showed linear rate-concentration plots with identical blocker on and off rates in control and aprotinin-inhibited conditions. Verification of open-block kinetics allowed for the use of a pulse protocol method (Helman, S.I., X. Liu, K. Baldwin, B.L. Blazer-Yost, and W.J. Els. 1998. Am. J. Physiol. 274:C947-C957) to study the same cells under different conditions as well as the reversibility of the aprotinin effect on single channel properties. Aprotinin caused reversible changes in all three single channel properties but only the change in the number of open channels was consistent with the inhibition of I(Na). A 50% decrease in I(Na) was accompanied by 50% increases in the single channel current and open probability but an 80% decrease in the number of open channels. Washout of aprotinin led to a time-dependent restoration of I(Na) as well as the single channel properties to the control, pre-aprotinin, values. We conclude that protease regulation of I(Na) is mediated by changes in the number of open channels in the apical membrane. The increase in the single channel current caused by protease inhibition can be explained by a hyperpolarization of the apical membrane potential as active Na(+) channels are retrieved. The paradoxical increase in channel open probability caused by protease inhibition will require further investigation but does suggest a potential compensatory regulatory mechanism to maintain I(Na) at some minimal threshold value.  相似文献   

18.
Tamoxifen has been reported to directly activate large conductance calcium-activated potassium (KCa) channels through the KCa beta1 subunit, suggesting a cardio-protective role of this compound. The present study using knock-out (KO) mice for the KCa channel beta1 subunit was aimed at understanding the molecular mechanisms of the effects of tamoxifen on arterial smooth muscle KCa channels. Single channel studies were conducted in excised patches from cerebral artery myocytes from both wild-type and KO animals. The present data demonstrated that tamoxifen can inhibit arterial KCa channels due to a major decrease in channel open probability (P(o)), a mechanism different from the reduction in single channel amplitude reported previously and also observed in the present work. A tamoxifen-induced decrease in P(o) was present in arterial KCa channels from both wild-type and beta1 KO animals. This inhibition was concentration-dependent and partially reversible with a half-maximal concentration constant IC(50) of 2.6 microm. The effect of tamoxifen was actually dual Single channel kinetic analysis showed that tamoxifen shortens both mean closed time and mean open time; the latter is probably due to an intermediate duration voltage-independent blocking mechanism. Thus, tamoxifen block would predominate when KCa channel P(o) is >0.1-0.2, limiting the maximum P(o), whereas a leftward shift in voltage or Ca(2+) activation curves can be observed for P(o) values lower than those values. This dual effect of tamoxifen appears to be independent of the beta1 subunit. The molecular specificity of tamoxifen, or eventually other xenoestrogen derivatives, for the KCa channel beta1 subunit is uncertain.  相似文献   

19.
Some studies of CFTR imply that channel activation can be explained by an increase in open probability (P(o)), whereas others suggest that activation involves an increase in the number of CFTR channels (N) in the plasma membrane. Using two-electrode voltage clamp, we tested for changes in N associated with activation of CFTR in Xenopus oocytes using a cysteine-substituted construct (R334C CFTR) that can be modified by externally applied, impermeant thiol reagents like [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET+). Covalent modification of R334C CFTR with MTSET+ doubled the conductance and changed the I-V relation from inward rectifying to linear and was completely reversed by 2-mercaptoethanol (2-ME). Thus, labeled and unlabeled channels could be differentiated by noting the percent decrease in conductance brought about by exposure to 2-ME. When oocytes were briefly (20 s) exposed to MTSET+ before CFTR activation, the subsequently activated conductance was characteristic of labeled R334C CFTR, indicating that the entire pool of CFTR channels activated by cAMP was accessible to MTSET+. The addition of unlabeled, newly synthesized channels to the plasma membrane could be monitored on-line during the time when the rate of addition was most rapid after cRNA injection. The addition of new channels could be detected as early as 5 h after cRNA injection, occurred with a half time of approximately 24-48 h, and was disrupted by exposing oocytes to Brefeldin A, whereas activation of R334C CFTR by cAMP occurred with a half time of tens of minutes, and did not appear to involve the addition of new channels to the plasma membrane. These findings demonstrate that in Xenopus oocytes, the major mechanism of CFTR activation by cAMP is by means of an increase in the open probability of CFTR channels.  相似文献   

20.
We used single channel methods on A6 renal cells to study the regulation by methylation reactions of epithelial sodium channels. 3-Deazaadenosine (3-DZA), a methyltransferase blocker, produced a 5-fold decrease in sodium transport and a 6-fold decrease in apical sodium channel activity by decreasing channel open probability (P(o)). 3-Deazaadenosine also blocked the increase in channel open probability associated with addition of aldosterone. Sodium channel activity in excised "inside-out" patches usually decreased within 1-2 min; in the presence of S-adenosyl-l-methionine (AdoMet), activity persisted for 5-8 min. Sodium channel mean time open (t(open)) before and after patch excision was higher in the presence of AdoMet than in untreated excised patches but less than t(open) in cell-attached patches. Sodium channel activity in excised patches exposed to both AdoMet and GTP usually remained stable for more than 10 min, and P(o) and the number of active channels per patch were close to values in cell-attached patches from untreated cells. These findings suggest that a methylation reaction contributes to the activity of epithelial sodium channels in A6 cells and is directed to some regulatory element closely connected with the channel, whose activity also depends on the presence of intracellular GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号