首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
目的 :探讨一氧化氮和内皮素在急性乙醇胃粘膜损伤中的作用及其相互关系。方法 :采用大鼠乙醇胃粘膜损伤模型 ,测定其胃粘膜内一氧化氮合成酶 (NOS)和内皮素 (ET)含量并观察其胃粘膜病理变化。结果 :随着乙醇作用时间延长和胃粘膜损伤的加重 ,胃粘膜内ET含量显著上升 (P <0 .0 5 ) ,而NOS的含量显著下降 (P <0 .0 5 ) ,两者呈负相关。结论 :胃粘膜内ET释放增加和NOS活性下降参与了急性乙醇胃粘膜损伤的病理生理过程。  相似文献   

2.
Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to bioactive nitrogen oxides, including nitric oxide (NO). In this study, we investigated the gastroprotective role of nitrate intake and of luminally applied nitrite against provocation with diclofenac and taurocholate. Mucosal permeability ((51)Cr-EDTA clearance) and gastric mucosal blood flow (laser-Doppler flowmetry) were measured in anesthetized rats, either pretreated with nitrate in the drinking water or given acidified nitrite luminally. Diclofenac was given intravenously and taurocholate luminally to challenge the gastric mucosa. Luminal NO content and nitrite content in the gastric mucus were determined by chemiluminescence. The effect of luminal administration of acidified nitrite on the mucosal blood flow was also investigated in endothelial nitric oxide synthase-deficient mice. Rats pretreated with nitrate or given nitrite luminally had higher gastric mucosal blood flow than controls. Permeability increased more during the provocation in the controls than in the nitrate- and nitrite-treated animals. Dietary nitrate increased luminal NO levels 50 times compared with controls. Nitrate intake also resulted in nitrite accumulation in the loosely adherent mucous layer; after removal of this mucous layer, blood flow was reduced. Nitrite administrated luminally in endothelial nitric oxide synthase-deficient mice increased mucosal blood flow. We conclude that dietary nitrate and direct luminal application of acidified nitrite decrease diclofenac- and taurocholate-induced mucosal damage. The gastroprotective effect likely involves a higher mucosal blood flow caused by nonenzymatic NO production. These data suggest an important physiological role of nitrate in the diet.  相似文献   

3.
Nitric oxide has been suggested as a contributor to tissue injury in various experimental models of gastrointestinal inflammation. However, there is overwhelming evidence that nitric oxide is one of the most important mediators of mucosal defence, influencing such factors as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Nitric oxide has the capacity to down-regulate inflammatory responses in the gastrointestinal tract, to scavenge various free radical species and to protect the mucosa from injury induced by topical irritants. Moreover, questions can be raised regarding the evidence purported to support a role for nitric oxide in producing tissue injury. In this review, we provide an overview of the evidence supporting a role for nitric oxide in protecting the gastrointestinal tract from injury.  相似文献   

4.
In gastric mucosal injury, nitric oxide (NO) plays both cytoprotective and cytotoxic roles, and the NO level is one determinant of these dual roles. We employed electron paramagnetic resonance (EPR)-spectrometry combined with an NO-trapping technique to directly evaluate NO production in ethanol-induced gastric injury in rats. The rat stomach, mounted on an ex vivo chamber, was perfused with ethanol (12.5 and 43%), and NO levels in mucosal tissues were measured during perfusion. Luminal nitrite/nitrate (NOx) content, mucosal blood flow, area of mucosal injury, transmucosal potential difference (PD), and luminal pH were simultaneously monitored with/without preadministration of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). NO levels in the gastric tissue increased during ethanol perfusion, and luminal NOx levels increased after the perfusion, accompanying an increase in the area of mucosal injury and changes in physiological parameters. Preadministration of L-NAME aggravated the gastric mucosal damage and suppressed increases in mucosal blood flow in a dose-dependent manner. These results demonstrate that endogenous NO produced in ethanol-induced gastric injury contributes to maintenance of mucosal integrity via regulation of mucosal blood flow.  相似文献   

5.
The role of different isoforms of nitric oxide synthase (NOS) in the gastric mucosal hyperemia, induced by 155 mM luminal hydrochloric acid (pH approximately 0.8) without a barrier breaker, was investigated. Rats were anesthetized with Inactin (120 mg/kg ip), and mice were anesthetized with Forene (2.2% in 40% oxygen gas at 150 ml/min); the gastric mucosa was exteriorized. Gastric mucosal blood flow was measured with laser-Doppler flowmetry (LDF) in rats treated with Nomega-nitro-l-arginine (l-NNA; unspecific NOS inhibitor), l-N6-(1-iminoethyl)lysine [l-NIL; inducible (i) NOS inhibitor], or S-methyl-l-thiocitrulline [SMTC; neuronal (n) NOS inhibitor], 10 mg/kg, followed by 3 mg. kg-1. h-1 iv, in iNOS-deficient (-/-) and nNOS(-/-) mice. mRNA was isolated from the gastric mucosa in iNOS(-/-) and wild-type (wt) mice, and real-time RT-PCR was performed. The effect of 155 mM acid on gastric mucosal permeability was determined by measuring the clearance of 51Cr-EDTA from blood to lumen. LDF increased by 48 +/- 13% during 155 mM HCl luminally, an increase that was abolished by l-NNA, SMTC, or l-NIL. In iNOS wt mice, LDF increased by 33 +/- 8% during luminal acid. The blood flow increase was attenuated substantially in iNOS(-/-) mice. RT-PCR revealed iNOS mRNA expression in the gastric mucosa in the iNOS wt groups. The blood flow increase in response to acid was not abolished in nNOS(-/-) mice (nNOS-sufficient mice, 39 +/- 18%; heterozygous mice, 25 +/- 19%; -/- mice, 19 +/- 7%). Mucosal permeability was transiently increased during 155 mM HCl. The results suggest that iNOS is constitutively expressed in the gastric mucosa and is involved in acid-induced hyperemia, suggesting a novel role for iNOS in gastric mucosal protection.  相似文献   

6.
Integrated duodenal protective response to acid.   总被引:7,自引:0,他引:7  
J D Kaunitz  Y Akiba 《Life sciences》2001,69(25-26):3073-3081
The proximal duodenum is unique in that it is the only leaky epithelium regularly exposed to concentrated gastric acid. To prevent injury from occurring, numerous duodenal defense mechanisms have evolved. The most studied is bicarbonate secretion, which is presumed to neutralize luminal acid. Less well studied in their protective roles are the mucus gel layer and blood flow. Measuring duodenal epithelial intracellular pH [pHi], blood flow and mucus gel thickness (MGT), we studied duodenal defense mechanisms in vivo so as to more fully understand the mucosal response to luminal acid. Exposure of the mucosa to physiologic acid solutions promptly lowered pHi, followed by recovery after acid was removed, indicating that acid at physiologic concentrations readily diffuses into, but does not damage duodenal epithelial cells. Cellular acid then exits the cell via an amiloride-inhibitable process, presumably sodium-proton exchange (NHE). MGT and blood flow increase promptly during acid perfusion; both decrease after acid challenge and are inhibited by vanilloid receptor antagonists or by sensory afferent denervation. Bicarbonate secretion is not affected by acid superfusion but increases after challenge. Inhibition of cellular base loading lowers pHi, whereas inhibition of apical base extrusion alkalinizes pHi. These observations support the following hypothesis: luminal acid diffuses into the epithelial cells, lowering pHi. Acidic pHi increases the activity of a basolateral NHE, acidifying the submucosal space and increasing cellular base loading. The acidic submucosal space activates capsaicin receptors on afferent nerves, increasing MGT and blood flow. With concontinued acid exposure, a new steady state with thickened mucus gel, increased blood flow, and a higher cellular buffering power protects against acid injury. After acid challenge, mucus secretion decreases, blood flow slows, and pHi returns to normal, the latter occurring via apical bicarbonate extrusion, increasing bicarbonate secretion. Through these integrated mechanisms, the epithelial cells are protected from damage due to repeated pulses of concentrated gastric acid.  相似文献   

7.
The role of NO in inflammatory bowel disease is controversial. Studies indicate that endothelial nitric oxide synthase (eNOS) might be involved in protecting the mucosa against colonic inflammation. The aim of this study was to investigate the involvement of nitric oxide (NO) in regulating colonic mucosal blood flow in two different colitis models in rats. In anesthetized control and colitic rats, the distal colon was exteriorized and the mucosa visualized. Blood flow (laser-Doppler flowmetry) and arterial blood pressure were continuously monitored throughout the experiments, and vascular resistance was calculated. Trinitrobenzene sulfonic acid (TNBS) or dextran sulfate sodium (DSS) was used to induce colitis. All groups were given the NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) or the inducible NOS (iNOS) inhibitor l-N(6)-(1-iminoethyl)-lysine (l-NIL). iNOS, eNOS, and neuronal NOS (nNOS) mRNA in colonic samples were investigated with real-time RT-PCR. Before NOS inhibition, colonic mucosal blood flow, expressed as perfusion units, was higher in both colitis models compared with the controls. The blood flow was reduced in the TNBS- and DSS-treated rats during l-NNA administration but was not altered in the control group. Vascular resistance increased more in the TNBS- and DSS-treated rats than in the control rats, indicating a higher level of vasodilating NO in the colitis models. l-NIL did not alter blood pressure or blood flow in any of the groups. iNOS and eNOS mRNA increased in both colitis models, whereas nNOS remained at the control level. TNBS- and DSS-induced colitis results in increased colonic mucosal blood flow, most probably due to increased eNOS activity.  相似文献   

8.
Background. The impact of H. pylori infection on gastric mucosal blood flow and NSAID‐induced gastric damage is unclear. Aim. To study the effects of H. pylori infection on gastric mucosal blood flow, both at basal conditions and after NSAID exposure, and its relation with mucosal damage and nitric oxide production. Methods. Gastric mucosal blood flow, nitric oxide production and gastric damage were assessed in time after H. pylori SS1 or E. coli inoculation in mice. Experiments were conducted in basal conditions or after oral exposure to indomethacin (20 mg/kg). Results. H. pylori infected mice exhibited a significant increase in gastric blood flow and gastric nitric oxide production 1 week after infection, but those parameters returned to basal levels by 4 weeks. NSAID challenge elicited a similar reduction in gastric blood flow [25–35%] in H. pylori‐infected and control animals. However, only 1 week H. pylori‐infected mice, which exhibited a significant baseline hyperemia, were able to maintain gastric blood flow values within the normal range after NSAID exposure. NSAID‐induced gastric damage was increased in H. pylori‐infected mice by 4 weeks, but not 1 week after infection. Conclusions. Underlying H. pylori infection aggravates acute NSAID‐induced gastric damage. However, at early phases, gastric hyperemia associated with increased nitric oxide production may exert some protective role.  相似文献   

9.
To explore the role of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) in gastric mucosal injury, 3 models of gastric mucosal injury induced by ethanol, indomethacin, or cold stress were used in rats. The cultured human gastric mucosal epithelial cell line GES-1 infected by Helicobacter pylori (Hp) was selected to mimic human gastric mucosal injury. Gastric mucosal ulcer index (UI), levels of ADMA and NO, and activity of dimethylarginine dimethylaminohydrolase (DDAH) were determined in the mucosal injury models; in Hp-infected or ADMA-treated GES-1 cells, levels of ADMA, NO, and TNF-alpha and activity of DDAH were measured. The results showed that UI and levels of ADMA were markedly increased and accompanied by significantly decreased DDAH activity in the mucosal injury models. Incubation of GES-1 cells with Hp increased levels of TNF-alpha and ADMA and decreased activity of DDAH. Administration of ADMA also increased levels of TNF-alpha. The results suggest that ADMA plays an important role in facilitating gastric mucosal injury, an effect which is associated with inhibiting NO synthesis and inducing inflammatory reaction.  相似文献   

10.
The stomach is in a state of continuous exposure to potentially hazardous agents. Hydrochloric acid together with pepsin constitutes a major and serious threat to the gastric mucosa. Reflux of alkaline duodenal contents containing bile and pancreatic enzymes are additional important injurious factors of endogenous origin. Alcohol, cigarette smoking, drugs and particularly aspirin and aspirin-like drugs, and steroids are among exogenous mucosal irritants that can inflict mucosal injury. The ability of the stomach to defend itself against these noxious agents has been ascribed to a number of factors constituting the gastric mucosal defense. These include mucus and bicarbonate secreted by surface epithelial cells, prostaglandins, sulfhydryl compounds and gastric mucosal blood flow. The latter is considered by several researchers to be of paramount importance in maintaining gastric mucosal integrity. The aim of this paper is to review the experimental and clinical data dealing with the role of mucosal blood flow and in particular the microcirculation in both damage and protection of the gastric mucosa.  相似文献   

11.
Ghrelin, identified in the gastric mucosa has been involved in control of food intake and growth hormone (GH) release but little is known about its influence on gastric secretion and mucosal integrity. The effects of ghrelin on gastric secretion, plasma gastrin and gastric lesions induced in rats by 75% ethanol or 3.5 h of water immersion and restraint stress (WRS) were determined. Exogenous ghrelin (5, 10, 20, 40 and 80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by ethanol and WRS and this was accompanied by the significant rise in plasma ghrelin level, gastric mucosal blood flow (GBF) and luminal NO concentrations. Ghrelin-induced protection was abolished by vagotomy and attenuated by suppression of COX, deactivation of afferent nerves with neurotoxic dose of capsaicin or CGRP(8-37) and by inhibition of NOS with L-NNA but not influenced by medullectomy and administration of 6-hydroxydopamine. We conclude that ghrelin exerts a potent protective action on the stomach of rats exposed to ethanol and WRS, and these effects depend upon vagal activity, sensory nerves and hyperemia mediated by NOS-NO and COX-PG systems.  相似文献   

12.
Exposure of the rat gastric mucosa to ethanol stimulates the generation of leukotriene (LTC4) and 15-hydroxyeicosatetraenoic acid, but not of thromboxanes and prostaglandins. Lipoxygenase activation is not found with other topical irritants or nonsteroidal anti-inflammatory drugs. A number of gastroprotective drugs dose-dependently inhibit the stimulatory action of ethanol on mucosal LTC4 formation closely parallel to their protective activity suggesting that ethanol-induced damage and activation of lipoxygenases may involve common targets which are simultaneously counteracted by certain types of protective agents. Selective inhibition of 5-lipoxygenase, however, does not confer protection against gastric mucosal damage caused by topical irritants or non-steroidal anti-inflammatory drugs. Thus, although leukotrienes may mediate certain reactions elicited by gastric ulcerogens such as submucosal venular constriction and mucosal microvascular engorgement, they do not appear to be major mediators of ulcerogen-induced tissue necrosis. The contribution of other products of the various pathways of arachidonic acid metabolism to gastric mucosal injury and the mechanism underlying the close interrelationship between protection and inhibition of LTC4 formation observed with certain compounds remains to be investigated.  相似文献   

13.
When the barrier to acid back-diffusion is disrupted, there is a protective increase in gastric mucosal blood flow to help remove the back-diffusing acid. Only recently has the mechanism for calling forth this protective hyperemia been determined. The gastric mucosa and submucosa are innervated by many capsaicin-sensitive sensory nerve fibers containing vasodilator peptides. The gastric mucosal sensory neurons monitor for acid back-diffusion, and, when this process occurs, signal for a protective increase in blood flow via release of calcitonin gene-related peptide from the submucosal periarteriolar fibers. The endothelium-derived vasodilator, nitric oxide, plays an important role both in the maintenance of basal gastric mucosal blood flow and in the increase in blood flow that accompanies pentagastrin-stimulated gastric acid secretion. It also interacts with the capsaicin-sensitive sensory nerves in the modulation of the microcirculation to maintain mucosal integrity. Finally, it has been shown that neutrophils play an important role in various forms of mucosal injury. The leukocytes adhere to the vascular endothelium and contribute to injury by reducing blood flow via occlusion of microvessels, as well as by releasing mediators of tissue damage.  相似文献   

14.
Sayegh AI  Ritter RC 《Peptides》2003,24(2):237-244
Cholecystokinin (CCK) is a peptide hormone released from the I-cells of the upper small intestine. CCK evokes a variety of physiological responses, such as stimulation of pancreatic secretion, reduction of food intake and inhibition of gastric emptying. Previously, we reported that CCK activates enteric neurons in the rat. However the specific subpopulations of enteric neurons activated by CCK have not been identified. In the work reported here, we utilized immunohistochemical detection of nuclear Fos, a marker for neuronal activation, and selected phenotypic markers to identify some of the neuronal subpopulations activated by CCK. The phenotypic markers that we examined were: nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calbindin (Cal), Calretinin (Calr), and neurofilament-M (NF-M). We found that in the myenteric plexus of the rat duodenum and jejunum, CCK activated NOS immunoreactive neurons. In the submucosal plexus of duodenum and jejunum, CCK activated Cal, Calr and NF-M immunoreactive neurons. CCK failed to activate NK-1R immunoreactive neurons in either plexus. Our results indicate that CCK activates distinct enteric neurons in the rat upper small intestine. Furthermore the fact that NOS immunoreactive neurons were activated suggests that CCK modulates the activity of inhibitory motor neurons in the myenteric plexus. Expression of Fos immunoreactivity in Calr and Cal immunoreactive neurons is consistent with a role for CCK in modulation of intrinsic sensory and/or secretomotor neuronal activity in the submucosal plexus.  相似文献   

15.
Impairment of blood perfusion in gastric mucosa results in the formation of erosions and ulcers. Nitric oxide (NO), produced via activity of NO-synthase (NOS), appears to be a one of major factors, involved in the regulation of the gastric blood flow (GBF). Inhibition of this enzyme by N-nitro-L-arginine (L-NNA) results in local decrease of NO production, reduces GBF and impairs gastric mucosal integrity, the effects that can be reversed by the pretreatment with L-arginine, the NOS substrate. However, little information is available regarding the contribution of reactive oxygen species (ROS)-induced lipid peroxidation and NO to the mechanism of gastric mucosal integrity. Therefore, the aim of our present study was to determine the action of pentoxyfilline (PTX), an inhibitor of tumor necrosis factor alpha (TNFalpha) with or without NOS inhibition by L-NNA administration in rats with water immersion and restraint stress (WRS)-induced gastric lesions. Experiments were carried out on 100 male Wistar rats. The gastric blood flow (GBF) was measured using laser Doppler flowmeter. The area of gastric lesions was determined by planimetry and the levels of proinflammatory cytokines (IL-1beta and TNFalpha) were measured by ELISA. Colorimetric assays were employed to determine gastric mucosal levels of lipid peroxidation products, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) and antioxidant enzymes including superoxide dismutase (SOD) activity, as well as tissue concentration of reduced glutathione (GSH). Administration of PTX significantly attenuated the gastric lesions, induced by 3.5 h of WRS and this was accompanied by the rise in the GBF and a significant decrease in plasma proinflammatory cytokines (IL-1beta and TNFalpha) levels, as well as the reduction of lipid peroxidation. Exposure of rats to WRS suppressed the SOD and GSH activities and these effects were reversed by PTX. The protective and hyperemic effects of PTX, as well as an increase in mucosal SOD activity and GSH concentration were counteracted by pretreatment with L-NNA, but restored by the pretreatment with L-arginine, a NOS substrate. We conclude that PTX exerts beneficial, gastroprotective effect against WRS-induced gastric lesions due to enhancement in gastric microcirculation, possibly mediated by the enhanced NOS activity as well as local action of NO and by the attenuation of oxidative metabolism and generation proinflammatory cytokines.  相似文献   

16.
The antiulcerogenic effect of diffractaic acid (DA) isolated from Usnea longissima, a lichen species, on indomethacin (IND)-induced gastric lesions was investigated in rats. Administration of 25, 50, 100 and 200 mg/kg doses of DA and ranitidine (RAN) (50 mg/kg dose) reduced the gastric lesions by 43.5%, 52.9%, 91.4%, 96.7% and 72.7%, respectively. It is known that oxidative stress leads to tissue injury in organisms. Thus, in all treated groups of rats, the in vivo activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were evaluated. IND caused oxidative stress, which resulted in LPO in tissues, by decreasing the levels of GPx, SOD and GSH as compared to healthy rats. In contrast to IND, the administration of DA and RAN showed a significant decrease in LPO level and an increase in tissue SOD, GPx and GSH levels. However, while CAT activity was significantly increased by the administration of IND, the administration of DA and RAN decreased CAT activity. The administration of IND also increased the myeloperoxidase (MPx) activity, which shows neutrophil infiltration into the gastric mucosal tissues. In contrast to IND, the administration of DA and RAN decreased MPx activity. The changes in activities of gastric mucosal nitric oxide synthases (NOS) throughout the development of gastric mucosal damage induced by IND were also studied. A decrease in constitutive NOS (cNOS) activity and an increase in inducible NOS (iNOS) activity were determined in gastric damaged tissues induced by IND. The administration of DA (100 mg/kg dose) and RAN reversed the activities of iNOS and cNOS. These results suggest that the gastroprotective effect of DA can be attributed to its enhancing effects on antioxidant defense systems as well as reducing effects of neutrophil infiltration.  相似文献   

17.
Orexin-A, identified in the neurons and endocrine cells in the gut, has been implicated in control of food intake and sleep behavior but little is known about its influence on gastric secretion and mucosal integrity. The effects of orexin-A on gastric secretion and gastric lesions induced in rats by 3.5 h of water immersion and restraint stress (WRS) or 75% ethanol were determined. Orexin-A (5-80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by WRS and this was accompanied by the significant rise in plasma orexin-A, CGRP and gastrin levels, the gastric mucosal blood flow (GBF), luminal NO concentration and an increase in mRNA for CGRP and overexpression of COX-2 protein and the generation of PGE(2) in the gastric mucosa. Orexin-A-induced protection was abolished by selective OX-1 receptor antagonist, vagotomy and attenuated by suppression of COX-1 and COX-2, deactivation of afferent nerves with neurotoxic dose of capsaicin, pretreatment with CCK(2)/gastrin antagonist, CGRP(8-37) or capsazepine and by inhibition of NOS with L-NNA. This study shows for the first time that orexin-A exerts a potent protective action on the stomach of rats exposed to non-topical ulcerogens such as WRS or topical noxious agents such as ethanol and these effects depend upon hyperemia mediated by COX-PG and NOS-NO systems, activation of vagal nerves and sensory neuropeptides such as CGRP released from sensory nerves probably triggered by an increase in gastric acid secretion induced by this peptide.  相似文献   

18.
Current roles of nitric oxide in gastrointestinal disorders.   总被引:17,自引:0,他引:17  
C H Cho 《Journal of Physiology》2001,95(1-6):253-256
It has been confusing as to what roles nitric oxide (NO) has in different physiological and pathological mechanisms in various diseases. In the gastrointestinal tract, NO can be either protective or deleterious in different disorders. This depends on what type of nitric oxide synthase (NOS) is involved in these pathological conditions. Constitutive NOS (cNOS) is responsible for production of NO in physiological context. In contrast, inducible NOS (iNOS) produces NO in pathophysiological circumstances. NO is implicated in mechanisms maintaining the integrity of the gastric epithelium. In this connection, it regulates gastric blood flow and directly stimulates gastric mucus secretion by activating soluble guanylate cyclase. A blockade of NO production resulted in an impairment of the vascular response and the subsequent alkaline flux in the lumen. This would impair the restitution process. Endogenous NO also contributes to the inhibition of acid secretion in the stomach. Indeed the adverse action of cigarette smoking on ulcer healing is largely dependent on the deficiency of cNOS and a subsequent depression of gastric blood flow and angiogenesis. To this end, NO may act as a crucial signal to promote endothelial cell differentiation into vascular tubes. In experimental colitis, NO derived from iNOS, together with other free radicals contribute significantly to the inflammatory response in the colon. It is also involved in the ulcerogenic effect of passive smoking on colitis. The mechanism is likely mediated through the interaction with superoxide to produce peroxynitrite, a strong oxidizing agent that initiates lipid peroxidation. In conclusion, NO in low concentration derived from cNOS is cytoprotective by directly acting as an inducer of defense responses in the gastrointestinal tract. However, higher concentrations of NO from iNOS exhibit toxic effects through nitrosative and oxidative stress.  相似文献   

19.
Background and Aims: Coffee irritates the gastric mucosa disrupting its barrier and increasing the risk of peptic ulcers. However, caffeine's contribution to these effects has not yet been elucidated. In this study we looked at the local effect of caffeine on the microcirculation and nitric oxide production in rats together with systemic marker of oxidative stress malondialdehyde as possible mechanisms whereby caffeine might participate in mucosal barrier impairment. Materials and Methods: Four groups of rats were anesthetized and administered as a bolus four different intraperitoneal doses of caffeine (0, 1, 10 and 50 mg kg(-1) b.wt.). The gastric submucosal microcirculation and nitric oxide production were then recorded for 2.5 hours by in situ microdialysis using the flow marker ethanol. At the completion of the experiments, plasma caffeine and malondialdehyde levels as well as morphological mucosal injury were determined. Results: There were no major differences in the macro- or microscopic pictures of the mucosa among the groups. Local microcirculatory (ethanol out/in ratio) and nitric oxide monitoring failed to demonstrate statistically significant changes as did measurement of plasma malondialdehyde in response to caffeine injections. Conclusions: Caffeine per se seems unlikely to contribute to the gastric mucosal barrier injury associated with coffee consumption by alterations in nutritive blood flow, nitric oxide production or aggravation of systemic oxidative stress. This information is relevant for better understanding of the mechanisms involved in caffeine-mediated influences on gastric physiology in relation to the irritant effects of coffee.  相似文献   

20.
Gastric mucosal integrity depends upon the balance between "aggressive" factors and "defensive" mechanisms. The formation of mucosal lesions results from the disruption of defense lines, including the breaking of unstirred mucus layer, the reduction of surface hydrophobicity, extensive exfoliation of surface epithelium, penetration of offending agents deeply into the mucosa and damage to the microvessels. The release of proinflammatory and vasoactive mediators such as leukotrienes (LT), thromboxanes, platelet activating factor (PAF), endothelins and others has been thought to be involved in the pathomechanism of mucosal injury, especially damage to the microvascular endothelium, increased vascular permeability, reduction in mucosal blood flow, vascular stasis, tissue ischemia and glandular cell necrosis. This paper reviews the mechanisms and possible pathogenetic implication of two related compounds, LT and PAF in acute mucosal injury by topical irritants such as ethanol, aspirin, bile salts and by stress. LT and PAF arise from similar membrane phospholipids and may regulate the biosynthesis of one another in the damaged mucosa. Although pharmacological studies have clearly demonstrated the noxious effects of cysteinyl LT and PAF on the mucosa, especially when exposed to topical irritants, recent publications have challenged the primary role of these mediators in the pathogenesis of mucosal lesions and ulcerations because the treatment with agents that selectively antagonize their biosynthesis or the receptor sites at the target cells did not always interrupt the chain of events leading to mucosal injury. The role of these mediators in the mucosal repair processes has been little studied but both cysteinyl LT and PAF seem to delay the restitution and healing of the mucosa. Further studies are necessary to clarify to what extent the biosynthesis of LT and PAF and the pharmacological inhibition of their action on the target tissues is related to noxious, protective and reparative events in the mucosa exposed to mild irritants and ulcerogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号