首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The major route for the synthesis of triacylglycerol (TAG) in yeast as well as in all TAG-accumulating organisms has been suggested to occur via the acylation of diacylglycerol (DAG) by acyl-CoA:diacylglycerol acyltransferase (DAGAT). Genes encoding DAGAT have been identified in both plant and animal tissues. These genes show strong sequence similarities to genes encoding acyl-CoA:cholesterol acyltransferase (ACAT). So far no Saccharomyces cerevisiae DAGAT gene has been published; however, two ACAT-like genes, ARE1 and ARE2, are present in the yeast genome. Both these genes have been suggested to be involved in the synthesis of sterol esters. We have now shown that the ARE1 gene in yeast also is involved in the synthesis of TAG, whereas the ARE2 gene is more specifically involved in the synthesis of sterol esters.  相似文献   

3.
Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the formation of cholesteryl estersfrom cholesterol and long-chain fatty-acyl-coenzyme A.At the single-cell level,ACAT serves as a regulatorof intracellular cholesterol homeostasis.In addition,ACAT supplies cholesteryl esters for lipoproteinassembly in the liver and small intestine.Under pathological conditions,the accumulation of cholesterylesters produced by ACAT in macrophages contributes to foam cell formation,a hallmark of the earlystage of atherosclerosis.Several reviews addressing various aspects of ACAT and ACAT inhibitors areavailable [1-8].This review briefly outlines the current knowledge on the biochemical properties of humanACATs,and then focuses on discussing the merit of ACAT as a drug target for pharmaceutical interventionsagainst atherosclerosis.  相似文献   

4.
Novel hydroxyphenylurea derivatives were synthesized and their inhibitory potency evaluated against acyl-CoA: cholesterol acyltransferase (ACAT). Quantitative structure activity relationship analysis revealed that their ACAT inhibitory activities were controlled by the hydrophobicity of the whole molecule. the substitution pattern of urea moiety, and the existence of carboxylic acid. The derivatives with strong activities inhibited foam cell formations. Moreover, these compounds showed antioxidative effects against low density lipoprotein (LDL), owing to their characteristic 3-lert-butyl-2-hydroxy-5-methoxyphenyl substructure. Based on the mechanism of atherosclerosis generation, this hydroxyphenylurea-type dual inhibitor against both ACAT and LDL oxidation is expected to be a promising drug for atherosclerosis.  相似文献   

5.
The perturbation of cellular cholesteryl ester biosynthesis in glioblastoma C-6 cells by lidocaine was investigated. Lidocaine specifically inhibited the incorporation of radioactive oleic acid into cellular cholesteryl ester but had no significant effect on the incorporation of oleic acid into phosphatidylcholine. Oxygenated cholesterol-enhanced cholesteryl ester formation was less sensitive to lidocaine inhibition. Several other local anesthetics were compared. Lidocaine altered cholesteryl ester formation in time- and dose-dependent manners. Lidocaine was a powerful inhibitor initially and its potency declined with time. Lidocaine was capable of directly inhibiting acyl-CoA:cholesterol acyltransferase (ACAT) activity in broken cell homogenates. The lidocaine-mediated inhibition of cellular cholesteryl ester formation triggered an enhanced intracellular ACAT activity that was not fully expressed in the presence of lidocaine. The activation of ACAT activity by lidocaine might represent a compensatory mechanism by which the inhibitory effect of lidocaine was partially overcome with time.  相似文献   

6.
Apolipoprotein A-I (apoA-I), the major protein in high density lipoprotein (HDL) regulates cholesterol homeostasis and is protective against atherosclerosis. An examination of the amino acid sequence of apoA-I among 21 species shows a high conservation of positively and negatively charged residues within helix 6, a domain responsible for regulating the rate of cholesterol esterification in plasma. These observations prompted an investigation to determine if charged residues in helix 6 maintain a structural conformation for protein-protein interaction with lecithin-cholesterol acyltransferase (LCAT) the enzyme for which apoA-I acts as a cofactor. Three apoA-I mutants were engineered; the first, (3)/(4) no negative apoA-I, eliminated 3 of the 4 negatively charged residues in helix 6, no negative apoA-I (NN apoA-I) eliminated all four negative charges, while all negative (AN apoA-I) doubled the negative charge. Reconstituted phospholipid-containing HDL (rHDL) of two discrete sizes and compositions were prepared and tested. Results showed that LCAT activation was largely influenced by both rHDL particle size and the net negative charge on helix 6. The 80 A diameter rHDL showed a 12-fold lower LCAT catalytic efficiency when compared to 96 A diameter rHDL, apparently resulting from an increased protein-protein interaction, at the expense of lipid-protein association on the 80 A rHDL. When mutant apoproteins were compared bound to the two different sized rHDL, a strong inverse correlation (r = 0.85) was found between LCAT catalytic efficiency and apoA-I helix 6 net negative charge. These results support the concept that highly conserved negatively charged residues in apoA-I helix 6 interact directly and attenuate LCAT activation, independent of the overall particle charge.  相似文献   

7.
8.
The capacity of acyl-CoA:cholesterol O-acyltransferase (ACAT) 2 to differentiate cholesterol from the plant sterol, sitosterol, was compared with that of the sterol esterifying enzymes, ACAT1 and lecithin:cholesterol acyltransferase (LCAT). Cholesterol-loaded microsomes from transfected cells containing either ACAT1 or ACAT2 exhibited significantly more ACAT activity than their sitosterol-loaded counterparts. In sitosterol-loaded microsomes, both ACAT1 and ACAT2 were able to esterify sitosterol albeit with lower efficiencies than cholesterol. The mass ratios of cholesterol ester to sitosterol ester formed by ACAT1 and ACAT2 were 1.6 and 7.2, respectively. Compared with ACAT1, ACAT2 selectively esterified cholesterol even when sitosterol was loaded into the microsomes. To further characterize the difference in sterol specificity, ACAT1 and ACAT2 were compared in intact cells loaded with either cholesterol or sitosterol. Despite a lower level of ACAT activity, the ACAT1-expressing cells esterified 4-fold more sitosterol than the ACAT2 cells. The data showed that compared with ACAT1, ACAT2 displayed significantly greater selectively for cholesterol compared with sitosterol. The plasma cholesterol esterification enzyme lecithin:cholesterol acyltransferase was also compared. With recombinant high density lipoprotein particles, the esterification rate of cholesterol by LCAT was only 15% greater than for sitosterol. Thus, LCAT was able to efficiently esterify both cholesterol and sitosterol. In contrast, ACAT2 demonstrated a strong preference for cholesterol rather than sitosterol. This sterol selectivity by ACAT2 may reflect a role in the sorting of dietary sterols during their absorption by the intestine in vivo.  相似文献   

9.
Pregnenolone (PREG) can be converted to PREG esters (PE) by the plasma enzyme lecithin: cholesterol acyltransferase (LCAT), and by other enzyme(s) with unknown identity. Acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2) convert various sterols to steryl esters; their activities are activated by cholesterol. PREG is a sterol-like molecule, with 3-β-hydroxy moiety at steroid ring A, but with much shorter side chain at steroid ring D. Here we show that without cholesterol, PREG is a poor ACAT substrate; with cholesterol, the V(max) for PREG esterification increases by 100-fold. The binding affinity of ACAT1 for PREG is 30-50-fold stronger than that for cholesterol; however, PREG is only a substrate but not an activator, while cholesterol is both a substrate and an activator. These results indicate that the sterol substrate site in ACAT1 does not involve significant sterol-phospholipid interaction, while the sterol activator site does. Studies utilizing small molecule ACAT inhibitors show that ACAT plays a key role in PREG esterification in various cell types examined. Mice lacking ACAT1 or ACAT2 do not have decreased PREG ester contents in adrenals, nor do they have altered levels of the three major secreted adrenal steroids in serum. Mice lacking LCAT have decreased levels of PREG esters in the adrenals. These results suggest LCAT along with ACAT1/ACAT2 contribute to control pregnenolone ester content in different cell types and tissues.  相似文献   

10.
Rabbits were fed either 10% coconut oil, 10% coconut oil and 1% beta-sitosterol, 10% coconut oil and 1% cholesterol, or 10% coconut oil and 1% beta-sitosterol plus 1% cholesterol for 4 weeks. Microsomal membranes from intestines of animals fed the 1% beta-sitosterol diet had 48% less cholesterol and were enriched twofold in beta-sitosterol compared to membranes from animals fed the coconut oil diet alone. Acylcoenzyme A:cholesterol acyltransferase (ACAT) activity in jejunum and ileum was decreased significantly in animals fed the plant sterol alone. In membranes from animals fed 1% beta-sitosterol and 1% cholesterol, beta-sitosterol content increased 50% whereas cholesterol was modestly decreased compared to their controls fed only cholesterol. Intestinal ACAT was unchanged in the animals fed both sterols when compared to their controls. beta-Sitosterol esterification was determined by incubating intestinal microsomal membranes with either [(14)C]beta-sitosterol-albumin emulsion or [(14)C]beta-sitosterol:dipalmitoyl phosphatidylcholine (DPPC) liposomes to radiolabel the endogenous sterol pool. Oleoyl-CoA was then added. The CoA-dependent esterification rate of beta-sitosterol was very slow compared to that of cholesterol using both techniques. An increased amount of endogenous microsomal beta-sitosterol, which occurs in animals fed 1% beta-sitosterol, did not interfere with the stimulation of ACAT activity secondary to cholesterol enrichment of the membranes. Enriching microsomal membranes three- to five-fold with beta-sitosterol did not affect ACAT activity. Freshly isolated intestinal cells were incubated for 1 hour with [(3)H]oleic acid and beta-sitosterol:DPPC or 25-hydroxycholesterol:DPPC. Incorporation of oleic acid into cholesteryl esters did not change in the presence of beta-sitosterol but increased fourfold after the addition of 25-hydroxycholesterol. We conclude that the CoA-dependent esterification rate of cholesterol is at least 60 times greater than that of beta-sitosterol. Membrane beta-sitosterol does not interfere with nor compete with cholesterol esterification. Inadequate esterification of this plant sterol may play a role in the poor absorption of beta-sitosterol by the gut.-Field, F. J., and S. N. Mathur. beta-Sitosterol: esterification by intestinal acylcoenzyme A:cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification.  相似文献   

11.
A series of polyunsaturated fatty acid anilides were synthesized and evaluated as ACAT inhibitors. Compound 24 had potent inhibitory activity against microsomal ACAT derived from U937, HepG2 and Caco-2 cell lines. Therefore, it might be expected to act as an antiarteriosclerotic and hypocholesterolemic agent. Interestingly, the ACAT inhibitory potency of 24 varied significantly depending on the source of the enzyme.  相似文献   

12.
An S  Cho KH  Lee WS  Lee JO  Paik YK  Jeong TS 《FEBS letters》2006,580(11):2741-2749
To investigate a role for histidine residues in the expression of normal acyl-CoA:cholesterol acyltransferase (ACAT) activity, the histidine residues located at five different positions in two isoenzymes were substituted by alanine, based on the sequence homology between ACAT1 and ACAT2. Among the 10 mutants generated by baculovirus expression technology, H386A-ACAT1, H460A-ACAT1, H360A-ACAT2, and H399A-ACAT2 lost their enzymatic activity completely. A reduction in catalytic activity is unlikely to result from structural changes in the substrate-binding pocket, because their substrate-binding affinities were normal. However, the enzymatic activity of H386A-ACAT1 was restored to <37% of the level of the wild-type activity when cholesterol was replaced by 25-hydroxycholesterol as substrate. H527A-ACAT1 and H501A-ACAT2, termed carboxyl end mutants, exhibit activities of ∼96% and ∼75% of that of the wild-type. Interestingly, H425A-ACAT1 showed 59% of the wild-type activity, in contrast to its equivalent mutant, H399A-ACAT2. These results demonstrate that the histidine residues located at the active site are very crucial both for the catalytic activity of the enzyme and for distinguishing ACAT1 from ACAT2 with respect to enzyme catalysis and substrate specificity.  相似文献   

13.
A series of 2a-i were prepared from a lead compound, saucerneol B (1) for evaluating their acyl-CoA: cholesterol acyltransferase inhibitory activities. Compounds 2a-g exhibited the high specificity of hACAT-1 than hACAT-2, whereas 2h and 2i showed very weak inhibitory activities in both hACAT-1 and hACAT-2. Saucerneol B (1) exhibited strong cholesterol-lowering effect in high cholesterol-fed mice.  相似文献   

14.
Chronic renal failure (CRF) is associated with profound abnormalities of lipid metabolism and accelerated arteriosclerotic cardiovascular disease. In a recent study, we found marked downregulation of hepatic lecithin-cholesterol acyltransferase, or LCAT, expression, which can account for impaired HDL maturation and depressed HDL cholesterol concentration in CRF. Here, we report on the effect of CRF on acyl-CoA:cholesterol acyltransferase (ACAT) expression. ACAT is an intracellular enzyme that catalyzes esterification of free cholesterol to cholesterol ester for storage or secretion. ACAT plays a major role in hepatic production and release of VLDL, intestinal absorption of cholesterol, foam cell formation, and atherogenesis. We examined hepatic expression of ACAT-1 and ACAT-2 mRNA (Northern blot) and protein (Western blot) abundance and total ACAT activity in male CRF rats (6 wk after 5/6 nephrectomy) and sham-operated controls. The CRF animals showed a significant reduction in creatinine clearance, marked hypertriglyceridemia, modest hypercholesterolemia, and significant upregulation of hepatic tissue ACAT-2 protein and mRNA abundance. In contrast, hepatic ACAT-1 mRNA and protein abundance were unaffected by CRF. Upregulation of ACAT-2 expression was accompanied by a significant increase in hepatic ACAT activity and a significant decrease in hepatic microsomal and whole liver free cholesterol concentration. Thus CRF results in significant upregulation of hepatic ACAT-2 (but not ACAT-1) expression and ACAT activity, which may, in part, contribute to the associated lipid disorders.  相似文献   

15.
Endogenous cholesterol esterification in chick liver microsomes was catalyzed by acyl-CoA:cholesterol acyltransferase using palmitoyl-CoA as substrate. An acyl-CoA hydrolase activity was also found in our microsomal preparations. Acyltransferase activity was stable after microsomes storage at -40 degrees C for 6 weeks and increased linearly with the preincubation time between 0 and 45 min. In our assay conditions, cholesteryl ester formation was linear up to 0.3 mg of microsomal protein in the reaction vial and 10 min of incubation. Maximal activity was found in reactions carried out in the presence of 1-2 mM dithiothreitol and 1.2 mg of bovine serum albumin, while acyl-CoA hydrolase was clearly inhibited by increasing albumin amounts.  相似文献   

16.
Apolipoprotein A-I(Milano): current perspectives   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Strategies to increase HDL are among the major targets of clinical research in atherosclerosis prevention. The mutant apolipoprotein A-I(Milano) has been associated with a reduced incidence of coronary disease in carriers. Furthermore, recombinant apolipoprotein A-I(Milano) has displayed remarkable atheroprotective activities and the possibility of directly reducing the burden of atherosclerosis in experimental models. This review is aimed at providing an update on the experimental studies in which apolipoprotein A-I(Milano), produced as a recombinant protein, has displayed important effects in the treatment of vascular diseases. RECENT FINDINGS: In the past year, two reports have appeared, indicating that a single-dose administration of recombinant apolipoprotein A-I(Milano) dimers formulated into liposomes can reduce atheromas in models such as the apolipoprotein E-deficient mice and a rabbit model of carotid focal lesion, in which a direct 90 min infusion of the product reduced atheroma up to 30%. This finding was associated with an increase in HDL free cholesterol and the permanence of the recombinant product in the lesion for over 72 h. SUMMARY: Recombinant apolipoprotein A-I(Milano), formulated as synthetic HDL with phospholipids, appears to exert a direct removing effect on arterial cholesterol. This is well evident in experimental animals and, more recently in clinical findings, as indicated by a dramatic increase in HDL free cholesterol after the infusion of different doses of the agent. As the product appears to be well tolerated and non-immunogenic, ongoing phase II studies in patients are being awaited with interest to obtain a 'proof of principle' for 'HDL therapy'.  相似文献   

17.
18.
A series of pyrazoline derivatives were prepared for evaluating their acyl-CoA:cholesterol acyltransferase activities. 3-(3,5-Di-tert-butyl-4-hydroxyphenyl)-5-(multi-substituted 4-hydroxyphenyl)-2-pyrazolines 4a-i were shown in vitro inhibitory activity on hACAT-1 and -2.  相似文献   

19.
1. The esterification of cholesterol was studied in Tetrahymena pyriformis an organism which does not synthesize sterols nor are sterols required for growth. 2. Microsomes catalyzed the esterification of cholesterol in the presence of oleoyl-CoA but not oleic acid or lecithin. 3. The enzyme has a similar sterol substrate specificity to that of mammalian acyl-CoA: cholesterol acyltransferase (ACAT) and was inhibited by the specific ACAT inhibitor 58-035. 4. The enzyme is constitutive since activity was observed in cells grown in sterol-free medium when cholesterol was added to the in vitro assay.  相似文献   

20.
Sulfonylureas are used in the treatment of non-insulin-dependent diabetes mellitus. Little is known, however, about their effects on cholesterol metabolism. We tested in the present study the effects of glibenclamide (GB) on cholesterol esterification (CE) in macrophage-derived cells. GB inhibited intracellular accumulation of CE induced by acetylated LDL or oxidized LDL in J774 cells, but no such effect on total cholesterol, suggesting that the target of GB was acyl-CoA:cholesterol acyltransferase (ACAT). In the cell-free reconstitution ACAT assay, GB inhibited the ACAT activity with an IC(50) value of 20 microM. Furthermore, GB effectively inhibited the ACAT activity of PMA-stimulated THP-1 cells to the undifferentiated level of THP-1. In the whole-cell ACAT assay using CHO cells overexpressed with ACAT-1 or ACAT-2, GB inhibited the activity of both isozymes with similar potency. Our in vitro data suggest that sulfonylurea could be a potential seed for a new generation of ACAT inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号