首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corticosteroids enhance beta-adrenergic responses by actions at both beta-adrenoceptor (beta-AR) and post-beta-AR sites. The present study investigated the effects of dexamethasone on beta-AR density, high-affinity beta-agonist binding, G(s)alpha and G(i)alpha protein expression, and cAMP responses in bovine tracheal smooth muscle (bTSM). Dexamethasone treatment of cultured bTSM cells increased total beta-AR density 1.6- to 1.9-fold as assessed by the saturation binding of [(3)H]CGP-12177 and by displacement of radioligand binding with isoproterenol. Isoproterenol bound to the beta-AR at two sites, a high-affinity site with a density of 5.9 +/- 1.2 fmol/mg protein and a low-affinity site with a density of 16.9 +/- 1. 0 fmol/mg protein. Dexamethasone increased both high- and low-affinity isoproterenol binding sites to 11.1 +/- 2.2 and 25.9 +/- 2.1 fmol/mg protein, respectively, without influencing agonist binding affinities. Dexamethasone also selectively increased G(s)alpha protein levels from 0.99 +/- 0.14 to 1.46 +/- 0.17 microg/mg protein without affecting G(i)alpha levels. The net effect of these changes was a 1.8-fold increase in maximal isoproterenol-induced cAMP generation in dexamethasone-treated bTSM cells. These findings provide new insights into the corticosteroid regulation of beta-adrenergic signaling pathways in airway smooth muscle.  相似文献   

2.
To corroborate alterations in the functional responses to beta-adrenergic receptor (beta-AR) stimulation with changes in beta-AR signaling in failing cardiomyocytes, contractile and L-type Ca(2+) current responses to isoproterenol along with stimulated cAMP generation were compared among cardiomyocytes isolated from canines with tachycardia-induced heart failure or healthy hearts. The magnitude of shortening of failing cardiomyocytes was significantly depressed (by 22 +/- 4.4%) under basal conditions, and the maximal response to isoproterenol was significantly reduced (by 45 +/- 18%). Similar results were obtained when the responses in the rate of contraction and rate of relaxation to isoproterenol were considered. The L-type Ca(2+) current amplitude measured in failing cardiomyocytes under basal conditions was unchanged, but the responses to isoproterenol were significantly reduced compared with healthy cells. Isoproterenol-stimulated cAMP generation was similar in sarcolemmal membranes derived from the homogenates of failing (45 +/- 6.8) and healthy cardiomyocytes (52 +/- 8.5 pmol cAMP. mg protein(-1). min(-1)). However, stimulated cAMP generation was found to be significantly reduced when the membranes were derived from the homogenates of whole tissue (failing: 67 +/- 8.1 vs. healthy: 140 +/- 27.8 pmol cAMP. mg protein(-1). min(-1)). Total beta-AR density was not reduced in membranes derived from either whole tissue or isolated cardiomyocyte homogenates, but the beta(1)/beta(2) ratio was significantly reduced in the former (failing: 45/55 vs. healthy: 72/28) without being altered in the latter (failing: 72/28, healthy: 77/23). We thus conclude that, in tachycardia-induced heart failure, reduction in the functional responses of isolated cardiomyocytes to beta-AR stimulation may be attributed to alterations in the excitation-contraction machinery rather than to limitation of cAMP generation.  相似文献   

3.
beta-Adrenoceptors (beta-ARs) are seven-transmembrane domain, G protein-coupled receptors that transduce the cellular effects of epinephrine and norepinephrine and play a pivotal role in the vertebrate stress response. This study reports the cloning and characterization of two previously unreported beta-ARs from the rainbow trout (Oncorhynchus mykiss). Phylogenetic analysis of amino acid sequences indicates that both beta-ARs are homologs of the mammalian beta3-AR. Analysis of tissue expression patterns indicates that one of these trout beta3-adrenoceptors (beta3a-AR) is highly expressed in gill and heart, whereas the second (beta3b-AR) is highly expressed by red blood cells (RBC). Expression of the beta3b-AR in the RBC coupled with the finding of a single category of beta-AR binding sites on RBC membranes provides strong evidence for the control of the trout RBC beta-AR Na+/H+ exchanger (beta-NHE) activity by signaling through this beta3b-subtype and not through a beta1-subtype as previously proposed. The RBC-specific trout beta3b-AR exhibits binding characteristics that distinguish this receptor from each of the three pharmacologically defined categories of mammalian beta-ARs (beta1-, beta2-, and beta3-AR). This study is the first to report the presence of a beta3-AR subtype in a fish species, and the proposal that the beta3b-AR controls RBC beta-NHE activity represents a novel role for the beta3-AR subtype in vertebrates.  相似文献   

4.
The effect of acute exercise (treadmill running) on rat myocardium beta-adrenergic receptors (beta-AR) was studied. beta-AR was identified in purified sarcolemmal membrane fractions and light vesicle fractions. In control hearts, the number of beta-AR was 21.25 +/- 2.25 and 20.89 +/- 2.89 fmol/mg protein (mean +/- SE) in sarcolemmal membranes and light vesicles, respectively. Immediately after a single bout of dynamic exercise, about 35% of beta-AR was transferred from light vesicles to sarcolemmal membranes (p less than 0.05); concomitantly, isoproterenol-stimulated adenylate cyclase activity also significantly increased in sarcolemmal membranes (p less than 0.05). These results suggest that acute exercise provokes the translocation of beta-AR from a presumably intracellular site (light vesicles) to functional membrane fractions (sarcolemmal membranes) in rat myocardium.  相似文献   

5.
The characteristics of hepatic beta(2)-adrenoceptors (AR) were examined in rainbow trout (Oncorhynchus mykiss) chased once per day to exhaustion for up to 7 days or fed the repartitioning agents clenbuterol (CLEN) or ractopamine (RACT) that function in mammals as beta-agonists. A one-day chase and feeding the CLEN for 37 days resulted in a significant 27% and 33% decrease, respectively, in the number of CGP-binding sites (B(max)) with no significant change in affinity (Kd) of hepatic beta(2)-ARs. Despite the significant decrease in beta(2)-AR numbers with CLEN feeding, no significant differences were found for either beta(2)-AR mRNA levels or adenylyl cyclase (ACase) activities. In addition, CLEN displayed only partial agonist activities as it was found to be more effective at blocking isoproterenol-stimulated cAMP production in isolated hepatocytes than stimulating cAMP production. The small affects of RACT may be related to its low active stereoisomer content and low affinity for the trout beta(2)-AR. Agonist regulation of the trout hepatic beta(2)-ARs may involve down-regulation of the receptors without affecting responsiveness.  相似文献   

6.
The novel brown adipose tissue (BAT) selective beta-adrenergic agonist, BRL 37344, is 31-fold more potent than (-)-isoproterenol in stimulating the respiratory rate of interscapular BAT fragments. BRL 37344 is also more potent (9-fold) than (-)-isoproterenol in stimulating adenylate cyclase activity of IBAT purified plasma membranes whereas, in the same preparation, it is 81-fold less potent than (-)-isoproterenol in competition displacement studies with the beta-adrenergic ligand, [125I]cyanopindolol. We have previously demonstrated that the photoaffinity reagent [125I]cyanopindolol-diazirine selectively labels a 62 kDa protein in IBAT plasma membranes that displays pharmacological properties of a beta 1-adrenergic subtype. Relatively high concentrations of BRL 37344 (10 microM) are required to displace [125I]cyanopindolol-diazirine binding to the 62 kDa protein. Taken together, the results suggest that two different populations of beta-adrenergic receptors may co-exist in BAT plasma membranes: a small population (about 15%) of atypical beta-receptors and a large population of beta 1-receptors that exhibit high and low affinities for BRL 37344, respectively.  相似文献   

7.
Recently, we showed that compared with the A/J inbred mouse strain, C57BL/6J (B6) mice have an athlete's cardiac phenotype. We postulated that strain differences would result in greater left ventricular (LV) hypertrophy in response to isoproterenol in B6 than A/J mice and tested the hypothesis that a differential response could be explained partly by differences in beta-adrenergic receptor (beta-AR) density and/or coupling. A/J and B6 mice were randomized to receive daily isoproterenol (100 mg/kg sc) or isovolumic vehicle for 5 days. Animals were studied using echocardiography, tail-cuff blood pressure, histopathology, beta-AR density and percent high-affinity binding, and basal and stimulated adenylyl cyclase activities. One hundred twenty-eight mice (66 A/J and 62 B6) were studied. Isoproterenol-treated A/J mice demonstrated greater percent increases in echocardiographic LV mass/body weight (97 +/- 11 vs. 20 +/- 10%, P = 0.001) and in gravimetric heart mass/body weight versus same-strain controls than B6 mice. Histopathology scores (a composite of myocyte hypertrophy, nuclear changes, fibrosis, and calcification) were greater in isoproterenol-treated A/J vs. B6 mice (2.8 +/- 0.2 vs.1.9 +/- 0.3, P < 0.05), as was quantitation of myocyte damage (22.3 +/- 11.5 vs. 4.3 +/- 3.5%). Interstrain differences in basal beta-AR density, high-affinity binding, and adenylyl cyclase activity were not significant. However, whereas isoproterenol-treated A/J mice showed nonsignificant increases in all beta-AR activity measures, isoproterenol-treated B6 mice had lower beta-AR density (57 +/- 6 vs. 83 +/- 8 fmol/mg, P < 0.05), percent high-affinity binding (15 +/- 2 vs. 26 +/- 3%, P < 0.005), and GTP + isoproterenol-stimulated adenylyl cyclase activity (10 +/- 1.1 vs. 5.8 +/- 1.5 pmol cAMP.mg(-1).min(-1)) compared with controls. High-dose, short-term isoproterenol produces greater macro- and microscopic cardiac hypertrophy and injury in A/J than B6 mice. A/J mice, unlike B6 mice, do not experience beta-AR downregulation or uncoupling in response to isoproterenol. Abnormalities in beta-adrenergic regulation may contribute to strain-related differences in the vulnerability to isoproterenol-induced cardiac changes.  相似文献   

8.
The tone of arterial blood vessels is regulated by the catecholamines through their receptors on arterial smooth muscle cells (ASMC). beta 2-adrenergic receptors of ASMC mediate vasodilation through agonist mediated c-AMP production. Previous reports have described these receptors on freshly isolated blood vessels. This study demonstrates the presence of beta 2-adrenergic receptors on cultured rat ASMC and that these receptors are functional. beta-adrenergic receptor binding was measured using [3H]-dihydroalprenolol (DHA) binding to the membrane of cultured ASMC from normotensive Wistar-Kyoto rats. The ASMC beta-adrenergic receptors have a Kd of 0.56 +/- 0.16 nM and a Bmax of 57.2 +/- 21.7 fmol/mg protein. Competition binding studies revealed a much greater affinity of these receptors for epinephrine than norepinephrine, indicating the preponderance of a beta 2-adrenergic receptor subtype. Isoproterenol stimulation of cultured ASMC resulted in a 14 +/- 7 fold increase in intracellular c-AMP content of these cells indicating these receptors are functional. beta-adrenergic receptors of cultured ASMC provide an excellent system in which the association between hypertension and observed beta-adrenergic receptor differences can be further explored.  相似文献   

9.
Decreased beta-adrenergic receptor (beta-AR) number occurs both in animal models of cardiac hypertrophy and failure and in patients. beta-AR recycling is an important mechanism for the beta-AR resensitization that maintains a normal complement of cell surface beta-ARs. We have shown that 1) in severe pressure overload cardiac hypertrophy, there is extensive microtubule-associated protein 4 (MAP4) decoration of a dense microtubule network; and 2) MAP4 microtubule decoration inhibits muscarinic acetylcholine receptor recycling in neuroblastoma cells. We asked here whether MAP4 microtubule decoration inhibits beta-AR recycling in adult cardiocytes. [(3)H]CGP-12177 was used as a beta-AR ligand, and feline cardiocytes were isolated and infected with adenovirus containing MAP4 (AdMAP4) or beta-galactosidase (Adbeta-gal) cDNA. MAP4 decorated the microtubules extensively only in AdMAP4 cardiocytes. beta-AR agonist exposure reduced cell surface beta-AR number comparably in AdMAP4 and Adbeta-gal cardiocytes; however, after agonist withdrawal, the cell surface beta-AR number recovered to 78.4 +/- 2.9% of the pretreatment value in Adbeta-gal cardiocytes but only to 56.8 +/- 1.4% in AdMAP4 cardiocytes (P < 0.01). This result was confirmed in cardiocytes isolated from transgenic mice having cardiac-restricted MAP4 overexpression. In functional terms of cAMP generation, beta-AR agonist responsiveness of AdMAP4 cells was 47% less than that of Adbeta-gal cells. We conclude that MAP4 microtubule decoration interferes with beta-AR recycling and that this may be one mechanism for beta-AR downregulation in heart failure.  相似文献   

10.
It has been suggested that there is a preferential coupling in heart muscle between the inhibitory G protein (G(i)) and the beta(2)-subtype of the beta-adrenergic receptor (beta-AR), since pertussis toxin (which inactivates G(i)) reveals latent beta(2)-ARs in rat and mouse myocytes. We have previously shown that guinea pigs treated with norepinephrine (NE) for 7 days have myocytes that are desensitized to beta-AR-agonist stimulation, and that pertussis toxin restores these responses. The purpose of the present investigation was to determine whether pertussis toxin specifically upregulated beta(2)-ARs in myocytes from NE-treated guinea pigs. The sole beta-AR subtype in control guinea pig myocytes was confirmed as beta(1)-AR by radioligand binding, single-cell autoradiography, and concentration-response curves to isoproterenol in contracting myocytes. In contrast, a minor pool of beta(2)-ARs was observed in rat myocytes by use of the same methods. NE treatment decreased the maximum isoproterenol response (relative to high Ca(2+)) from 0.89 +/- 0.06 to 0.58 +/- 0.08 (n = 7, P < 0.01) and the pD(2) (-log EC(50)) from 8.8 +/- 0.2 to 7.5 +/- 0.2 (n = 7, P < 0.01). Pertussis toxin treatment increased the isoproterenol-to-Ca(2+) ratio to 0.88 +/- 0.04 (n = 6, P < 0.05) and the pD(2) to 8.6 +/- 0.3 (P < 0.01). This was not mediated by increases in either number or function of beta(2)-ARs. G(i) is therefore able to modulate beta(1)-AR responses in guinea pig myocytes.  相似文献   

11.
Rainbow trout (Oncorhynchus mykiss, Walbaum) were acclimated to 4 degrees C and 17 degrees C for more than 4 weeks and heart rate was determined in the absence and presence of adrenaline to see how thermal adaptation influences basal heart rate and its beta-adrenergic control in a eurythermal fish species. The basal heart rate in vitro was higher in cold-acclimated than warm-acclimated rainbow trout at temperatures below 17 degrees C. On the other hand, adaptation to cold decreased thermal tolerance of heart rate so that the maximal heart rates were achieved at 17 degrees C (75 +/- 4 bpm) and 24 degrees C (88 +/- 2 bpm) in cold-acclimated and warm-acclimated trout, respectively. Beta-adrenergic response of the heart was enhanced by cold-adaptation, since adrenaline (100 nmol l(-1)) caused stronger stimulation of heart rate in cold-acclimated (29 +/- 14%) than in warm-acclimated fish (10 +/- 1%; P = 0.03). Furthermore, adrenaline strongly opposed the temperature-dependent deterioration of force production in cold-acclimated trout but not in warm-acclimated trout. The results indicate that adaptation to cold increases basal heart rate but decreases its thermal tolerance in rainbow trout. Cold acclimation up-regulates the beta-adrenergic system, and beta-adrenoceptor activation seems to provide cardioprotection against high temperatures in the cold-adapted rainbow trout.  相似文献   

12.
Nagase I  Yoshida T  Saito M 《FEBS letters》2001,494(3):175-180
Catecholamine-induced and beta-adrenergic receptor (beta-AR)-mediated thermogenesis in skeletal muscle is a significant component of whole-body energy expenditure. Skeletal muscle expresses uncoupling protein (UCP) 2 and UCP3, which can dissipate the transmitochondrial electrochemical gradient and thereby may be involved in regulation of energy metabolism. We investigated the effects of beta-AR stimulation on UCP2 and UCP3 expression in L6 myotubes. Stimulation of the cells with epinephrine increased the UCP3 mRNA level transiently at 6 h, and also the UCP2 mRNA level at 6-24 h. The stimulatory effects of epinephrine were also observed in the presence of carbacyclin and 9-cis retinoic acid, and mimicked by isoproterenol and salbutamol (beta2-AR agonists), but abolished by propranolol and ICI-118,551 (beta2-AR antagonists). Pharmacological and mRNA analyses revealed the existence of beta2-AR, but not beta1- and beta3-ARs, in L6 myotubes. These results suggested that catecholamines up-regulate UCP2 and UCP3 expression through direct action on the beta2-AR in skeletal muscle.  相似文献   

13.
The thermic effect of food (TEF) is an important physiological determinant of total daily energy expenditure (EE) and energy balance. TEF is believed to be mediated in part by sympathetic nervous system activation and consequent beta-adrenergic receptor (beta-AR) stimulation of metabolism. TEF is greater in habitually exercising than in sedentary adults, despite similar postprandial sympathetic nervous system activation. We determined whether augmented TEF in habitually exercising adults is associated with enhanced peripheral thermogenic responsiveness to beta-AR stimulation. In separate experiments in 22 sedentary and 29 habitually exercising adults, we measured the increase in EE (indirect calorimetry, ventilated hood) during beta-AR stimulation (intravenous isoproterenol: 6, 12, and 24 ng x kg fat-free mass(-1) x min(-1)) and EE before and after a liquid meal (40% of resting EE; 53% carbohydrate, 32% fat, 15% protein). The increase in EE during incremental isoproterenol administration was greater (P = 0.01) in habitual exercisers (0.34 +/- 0.03, 0.54 +/- 0.04, 0.81 +/- 0.05 kJ/min; means +/- SE) than in sedentary adults (0.26 +/- 0.03, 0.40 +/- 0.03, 0.64 +/- 0.04 kJ/min). The area under the TEF response curve was also greater (P = 0.04) in habitual exercisers (160 +/- 9 kJ) than in sedentary adults (130 +/- 11 kJ) and was positively related to beta-AR thermogenic responsiveness (r = 0.32, P = 0.02). We conclude that TEF is related to beta-AR thermogenic responsiveness and that the greater TEF in habitual exercisers is attributable in part to their augmented beta-AR thermogenic responsiveness. Our results also suggest that peripheral thermogenic responsiveness to beta-AR stimulation is a physiological determinant of TEF and hence energy balance in healthy adult humans.  相似文献   

14.
Beta-adrenergic agonists (beta-AA) enhance protein accretion in skeletal muscles. This stimulation is characterized by increased protein synthesis, increased expression of myofibrillar protein genes and a depression in protein degradation in animals, and increased proliferation and DNA synthesis in muscle cells in vitro. The mechanism or signal path in muscle whereby beta-AA would elicit these physiological effects upon binding to the G protein-coupled beta-adrenergic receptor (beta-AR) is unclear. C2C12 myoblasts were used to determine beta-AR ligand binding characteristics, cyclic AMP synthesis in response to isoproterenol (ISO) stimulation, and effects of ISO on DNA synthesis, mitogen activated protein kinase (MAPK), and fibronectin (FN) gene expression. Results showed that C2C12 cells possess beta-AR which are specific, saturable, and of high affinity (Kd = 0.2 nM). Forskolin and ISO stimulated cAMP production by = 20-fold (P<0.001) and 17-fold (P<0.001), respectively. ISO and the cAMP analog, 8-bromo-cAMP (8-BC) stimulated DNA synthesis in proliferating cells by 150% (P<0.05) and 200% (P<0.01), respectively, without modulating MAPK activity, whereas addition of fetal bovine serum to culture resulted in a 500% increase (P<0.01) in DNA synthesis and MAPK activation. DNA synthesis in C2C12 cells treated with ISO, 8-BC, or FBS was abolished in the presence of 25 microM PD098059, an MAPK-kinase inhibitor, suggesting that an MAPK-dependent pathway is likely involved in C2C12 proliferation. During cAMP elevating agent stimulation, basal MAPK activity may be sufficient, in the presence of other putative signaling molecules, to support proliferation in these cells. ISO or 8-BC treatment increased FN mRNA by three- and seven-fold, respectively, in growing C2C12 cells implying a connection between increased DNA synthesis and FN gene expression.  相似文献   

15.
Expression of ligand binding properties for an atypical beta-adrenergic receptor (beta-AR) subtype was studied during the adipose differentiation of murine 3T3-F442A cells and compared with that of the human beta 3-AR expressed in Chinese hamster ovary cells stably transfected with the human beta 3-AR gene (CHO-beta 3 cells) Emorine, L. J., Marullo, S., Briend-Sutren, M. M., Patey, G., Tate, K., Delavier-Klutchko, C., and Strosberg, A. D. (1989) Science 245, 1118-1121). 3T3-F442A adipocytes exhibited high and low affinity binding sites for (-)-4-(3-t-butylamino-2-hydroxypropoxy) [5,7-3H]benzimidazole-2-one ((-)-[3H]CGP-12177) (KD = 1.2 and 38.3 nM) and (-)-[125I]iodocyanopindolol ([125I]CYP) (KD = 47 and 1,510 pM). The high affinity sites corresponded to the classical beta 1- and beta 2-AR subtypes whereas the KD values of the low affinity sites for the radioligands were similar to those measured in CHO-beta 3 cells (KD = 28 nM and 1,890 pM for (-)-[3H]CGP12177 and [125I]CYP, respectively). These low affinity sites were undetectable in preadipocytes but represented about 90% of total beta-ARs in adipocytes. The atypical beta-AR and the human beta 3-AR add similarly low affinities (Ki = 3-5 microM) for (+/-)-(2-(3-carbamoyl-4-hydroxyphenoxy)ethylamino-3)-(4-(1-methyl- 4- trifluormethyl-2-imidazolyl)-phenoxy)-2-propanol methane sulfonate (CGP20712A) or erythro-(+/-)-1-(7-methylindan-4-yloxy)-3-isopropylaminob utan-2-ol (ICI118551), highly selective beta 1- and beta 2-AR antagonists, respectively, in agreement with the poor inhibitory effect of the compounds on (-)-isoproterenol (IPR)-stimulated adenylate cyclase activity. Atypical beta-AR and beta 3-AR had an affinity about 10-50 times higher for sodium-4-(2-[2-hydroxy-2-(3-chlorophenyl)ethylamino]propyl)phenoxyace tate sesquihydrate (BRL37344) than the beta 1-AR subtype. This correlates with the potent lipolytic effect of BRL37344 in adipocytes. The rank order of potency of agonists in functional and binding studies was BRL37344 greater than IPR less than (-)-norepinephrine greater than (-)-epinephrine both in 3T3 adipocytes and CHO-beta 3 cells. As in CHO-beta 3 cells, the classical beta 1- and beta 2-antagonists CGP12177, oxprenolol, and pindolol were partial agonists in adipocytes. Although undetectable in preadipocytes, a major mRNA species of 2.3 kilobases (kb) and a minor one of 2.8 kb were observed in adipocytes by hybridization to a human beta 3-AR specific probe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
We have previously shown that the beta-adrenergic receptor (beta-AR) stimulates activity of the ubiquitous Na-H exchanger (NHE-1) independently of changes in cAMP accumulation and independently of a cholera toxin-sensitive stimulatory GTP-binding protein (Gs). To further investigate the potential role of a GTP-binding protein in coupling the beta-AR to NHE-1, we have used a recently available nonhydrolyzable GTP analog, "caged" guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), to study time-dependent effects of GTP on NHE-1 in intact cells. By monitoring intracellular pH (pHi) in cells loaded with the fluorescent pH-sensitive dye, 2,7-biscarboxyethyl-5(6)-carboxyfluorescein, we determined NHE-1 activity in primary cultures of canine enteric endocrine cells, which express an endogenous beta-AR, and in mouse L cells stably transfected with either the wild type hamster beta 2-AR or a mutant construct of the hamster beta 2-AR containing a deletion in amino acid residues 222-229. This D(222-229)beta 2-AR is functionally uncoupled from Gs and adenylylcyclase. In all three cell types, NaF and GTP gamma S induced an increase in activity of the exchanger, determined by assessing the rate of pHi recovery from an acute intracellular acid load (dpHi/dt). This increase in pHi recovery was dependent on extracellular Na+ and sensitive to the amiloride analog ethylisopropylamiloride. GTP gamma S, but not NaF, also increased beta-adrenergic stimulation of resting NHE-1 activity. The alkalinization in response to isoproterenol was reversed by propranolol in the absence, but not the presence, of GTP gamma S and was completely blocked by GDP beta S. The ability of guanine nucleotides to regulate beta-adrenergic activation of NHE-1 in cells expressing the mutant D(222-229)beta 2-AR suggests that functional coupling of the beta-AR to NHE-1 may be mediated by a GTP-binding protein other than Gs.  相似文献   

17.
The sympathetic-catecholamine system is involved in the regulation of hepatic metabolic pathways mainly through cAMP-linked beta2-adrenoceptors (beta2-ARs) in humans and to a lesser extent through cAMP-independent mechanisms, but no information is available about the possible biochemical changes of beta2-ARs and their signalling pathways in human colorectal cancer (CRC) and colorectal cancer hepatic metastases (CRCHM). Changes in density and distribution of beta-ARs as well as in post-receptor signalling components were studied in membranes of human liver with CRCHM, and for comparison, in membranes of nonadjacent, non-metastatic human liver (NA-NM) obtained from 13 patients, using binding and competition binding studies. Studies were also carried out using normal and cancerous human colon tissues. In CRCHM, the density of beta-ARs (B(max)) was significantly reduced, compared to NA-NM liver tissues (40.09+/-2.83 vs. 23.09+/-3.24 fmol/mg protein; P<0.001). A similar decrease in the beta-AR density was observed in the colon with primary colorectal cancer compared to healthy colon (37.6+/-2.2 vs. 23.8+/-3.5 fmol/mg protein), whereas the affinity of ICYP binding to the receptor remained unaffected. Desensitized beta-ARs were uncoupled from stimulatory G-protein (G(S)), as total density of beta-adrenoceptors in the high affinity state was significantly reduced. Concomitantly, CRCHM elicited decrease in the catalytic adenylate cyclase (AC) activity (cAMP formation) in response to isoproterenol plus GTP or forskolin or NaF. In NA-NM and CRCHM liver, the inhibition-concentration curves of ICI 118.551 showed the presence of a homogeneous population of the beta2-AR subtypes. Neither the binding patterns nor the inhibition constant (K(i)) of ICI 118.551 were altered in CRCHM. In CRCHM, the hepatic beta-AR-G-protein(s)-AC signalling system was markedly impaired, thus, these changes may well influence beta-AR-mediated functions in both organs.  相似文献   

18.
Beta1- and beta2-adrenergic receptors (beta-ARs) co-exist in mammalian heart, and it is generally accepted that both activate adenylyl cyclase (AC), resulting in increased levels of cAMP and subsequent activation of L-type Ca2+ channels (CaCh). To investigate the contribution of each beta-AR subtype in AC and CaCh coupling, we stably expressed cardiac CaCh alpha1 and beta2 subunits along with either beta1-AR or beta2-AR in CHW fibroblasts. Co-expression of either beta-AR with CaCh subunits conferred responsiveness of AC and CaCh to isoproterenol (ISO), which was not observed in non-transfected cells. ISO-promoted cAMP formation occurred at a lower EC50 through the beta2-AR than through the beta1-AR (0.13 +/- 0.01 vs. 0.6 +/- 0.14 nM). In contrast, activation of CaCh was more efficacious via the beta1-AR than the beta2-AR (EC50 for CaCh activation = 238 +/- 33 vs. 1057 +/- 113 nM). Pre-treatment with pertussis toxin (PTX) had no effect upon the responsiveness of either cAMP formation or CaCh activation through either receptor. We conclude (1) that beta1-ARs exhibit preferential coupling to CaCh activation, versus that observed for the beta2-AR; (2) that this preferential coupling cannot be explained solely by cAMP-dependent processes; and (3) that the relative attenuation of beta2-AR-promoted CaCh activation is not due to receptor coupling to PTX-sensitive G proteins. Thus, it is likely that other subtype-specific, cAMP-independent coupling of the beta-AR to CaCh is present.  相似文献   

19.
Stimulation of beta-adrenergic receptors (beta-AR) by the sympathetic nervous system (SNS) modulates energy expenditure (EE), but substantial interindividual variability is observed. We determined whether the thermogenic response to beta-AR stimulation is related to genetic variation in codon 16 of the beta(2)-AR, a biologically important beta-AR polymorphism, and whether differences in SNS activity (i.e., the stimulus for agonist-promoted downregulation) are involved. The increase in EE (DeltaEE, indirect calorimetry, ventilated hood) above resting EE in response to nonspecific beta-AR stimulation [iv isoproterenol: 6, 12, and 24 ng/kg fat-free mass (FFM)/min] was measured in 46 healthy adult humans [Arg16Arg: 9 male, 7 female, 48 +/- 5 yr; Arg16Gly: 11 male, 4 female, 53 +/- 5 yr; Gly16Gly: 3 male, 12 female, 48 +/- 5 yr (means +/- SE)]. Neither FFM-adjusted baseline resting EE (P = 0.83) nor the dose of isoproterenol required to increase EE 10% above resting (P = 0.87) differed among the three groups (Arg16Arg: 5,409 +/- 209 kJ/day, 11.2 +/- 2.1 ng x kg FFM(-1) x min(-1); Arg16Gly: 5,367 +/- 272 kJ/day, 11.1 +/- 2.1 ng x kg FFM(-1) x min(-1); Gly16Gly: 5,305 +/- 159 kJ/day, 10.5 +/- 1.4 ng x kg FFM(-1) x min(-1)). Consistent with this, muscle sympathetic nerve activity and plasma norepinephrine concentrations were not different among the groups. Group differences in sex composition did not influence the results. Our findings indicate that the thermogenic response to nonspecific beta-AR stimulation, an important mechanistic component of overall beta-AR modulation of EE, is not related to this beta(2)-AR polymorphism in healthy humans. This may be explained in part by a lack of association between this gene variant and tonic SNS activity.  相似文献   

20.
A binding assay has been developed to characterize beta-adrenergic receptors on intact L6 muscle cells. The affinity of beta-adrenergic receptors for the radioligand iodohydroxybenzylpindolol (IHYP) was the same in membrane preparations and in intact cells when determined by either equilibrium binding or kinetic analysis. The number of specific IHYP binding sites per cell was approximately the same on intact cells as on membranes. The pharmacological properties of antagonists indicated that the receptors on intact cells were identical to those on membranes. However, the beta-adrenergic receptors on intact cells had a 100-400 fold lower affinity at equilibrium for the agonist isoproterenol than did beta-adrenergic receptors on membranes. This low affinity of the receptor for agonists as measured by inhibition of radioligand binding in intact cells has also been observed in C6 (2) and S49 (3) cells. Our results suggest that beta receptors on intact cells after a 1 minute incubation was similar to the KD value for isoproterenol measured in membranes at equilibrium in the presence of GTP. After 1-2 minutes of exposure to a low concentration of agonist, binding of IHYP was no longer inhibited. These results suggest that agonists rapidly convert the beta receptors on intact cells to a state which has a low affinity for agonists. The affinity of the receptor for antagonists did not change during the incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号