首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties.  相似文献   

2.
At the end of germband retraction, the dorsal epidermis of the Drosophila embryo exhibits a discontinuity that is covered by the amnioserosa. The process of dorsal closure (DC) involves a coordinated set of cell-shape changes within the epidermis and the amnioserosa that result in epidermal continuity. Polarisation of the dorsal-most epidermal (DME) cells in the plane of the epithelium is an important aspect of DC. The DME cells of embryos mutant for wingless or dishevelled exhibit polarisation defects and fail to close properly. We have investigated the role of the Wingless signalling pathway in the polarisation of the DME cells and DC. We find that the beta-catenin-dependent Wingless signalling pathway is required for polarisation of the DME cells. We further show that although the DME cells are polarised in the plane of the epithelium and present polarised localisation of proteins associated with the process of planar cell polarity (PCP) in the wing, e.g. Flamingo, PCP Wingless signalling is not involved in DC.  相似文献   

3.
4.
5.
The migration of tissue cells requires interplay between the microtubule and actin cytoskeletal systems. Recent reports suggest that interactions of microtubules with actin dynamics creates a polarization of microtubule assembly behavior in cells, such that microtubule growth occurs at the leading edge and microtubule shortening occurs at the cell body and rear. Microtubule growth and shortening may activate Rac1 and RhoA signaling, respectively, to control actin dynamics. Thus, an actin-dependent gradient in microtubule dynamic-instability parameters in cells may feed back through the activation of specific signalling pathways to perpetuate the polarized actin-assembly dynamics required for cell motility.  相似文献   

6.
Dynamic analysis of actin cable function during Drosophila dorsal closure   总被引:1,自引:0,他引:1  
Throughout development, a series of epithelial movements and fusions occur that collectively shape the embryo. They are dependent on coordinated reorganizations and contractions of the actin cytoskeleton within defined populations of epithelial cells. One paradigm morphogenetic movement, dorsal closure in the Drosophila embryo, involves closure of a dorsal epithelial hole by sweeping of epithelium from the two sides of the embryo over the exposed extraembryonic amnioserosa to form a seam where the two epithelial edges fuse together. The front row cells exhibit a thick actin cable at their leading edge. Here, we test the function of this cable by live analysis of GFP-actin-expressing embryos in which the cable is disrupted by modulating Rho1 signaling or by loss of non-muscle myosin (Zipper) function. We show that the cable serves a dual role during dorsal closure. It is contractile and thus can operate as a "purse string," but it also restricts forward movement of the leading edge and excess activity of filopodia/lamellipodia. Stripes of epithelium in which cable assembly is disrupted gain a migrational advantage over their wild-type neighbors, suggesting that the cable acts to restrain front row cells, thus maintaining a taut, free edge for efficient zippering together of the epithelial sheets.  相似文献   

7.
Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.  相似文献   

8.
9.
Endogenous electric field is considered to play an important role in promoting collective migration of epidermis to the wound centre. However, most studies are focused on the effect of bioelectric field on the movement and migration of single epithelial cell; the molecular mechanisms about collective migration of epidermal monolayers remain unclear. Here, we found that EFs dramatically promoted the collective migration of HaCaT cells towards the anode, activated the sheddase activity of ADAM17 and increased the phosphorylation level of EGFR. Moreover, EGFR phosphorylation and HB‐EGF shedding level were significantly decreased by the ADAM17 inhibitor TAPI‐2 or siADAM17 under EFs, which subsequently attenuated the directed migration of HaCaT sheets. Notably, the inhibition of EF‐regulated collective migration by siADAM17 was rescued by addition of recombinant HB‐EGF. Furthermore, we observed that F‐actin was dynamically polarized along the leading edge of the migrated sheets under EFs and that this polarization was regulated by ADAM17/HB‐EGF/EGFR signalling. In conclusion, our study indicated that ADAM17 contributed to the collective directional movement of the epidermal monolayer by driving HB‐EGF release and activating EGFR under EFs, and this pathway also mediated the polarization of F‐actin in migrating sheets, which is essential in directional migration.  相似文献   

10.
Cell migration requires integration of cellular processes resulting in cell polarization and actin dynamics. Previous work using tools of Drosophila genetics suggested that protocadherin fat serves in a pathway necessary for determining cell polarity in the plane of a tissue. Here we identify mammalian FAT1 as a proximal element of a signaling pathway that determines both cellular polarity in the plane of the monolayer and directed actin-dependent cell motility. FAT1 is localized to the leading edge of lamellipodia, filopodia, and microspike tips where FAT1 directly interacts with Ena/VASP proteins that regulate the actin polymerization complex. When targeted to mitochondrial outer leaflets, FAT1 cytoplasmic domain recruits components of the actin polymerization machinery sufficient to induce ectopic actin polymerization. In an epithelial cell wound model, FAT1 knockdown decreased recruitment of endogenous VASP to the leading edge and resulted in impairment of lamellipodial dynamics, failure of polarization, and an attenuation of cell migration. FAT1 may play an integrative role regulating cell migration by participating in Ena/VASP-dependent regulation of cytoskeletal dynamics at the leading edge and by transducing an Ena/VASP-independent polarity cue.  相似文献   

11.
Precise migration of neural stem/progenitor cells (NSCs) is crucially important for neurogenesis and repair in the nervous system. However, the detailed mechanisms are not clear. Our previous results showed that NSCs in varying differentiation states possess different migratory ability to vascular endothelial growth factor (VEGF). In this study, we demonstrate the different dynamics of focal adhesions (FAs) and reorganization of F‐actin in NSCs during spreading and migration stimulated by VEGF. We found that the migrating NSCs of 0.5 and 1 day differentiation possess more FAs at leading edge than cells of other states. Moreover, the phosphorylation of focal adhesion kinase (FAK) and paxillin in NSCs correlates closely with their differentiation states. VEGF promotes FA formation with broad lamellipodium generation at the leading edge in chemotaxing cells of 0, 0.5, and 1 day differentiation, but not in cells of 3 days differentiation. Furthermore, cells of 1 day differentiation show a maximal asymmetry of FAs between lamella and cell rear, orchestrating cell polarization and directional migration. Time‐lapse video analysis shows that the disassembly of FAs and the cell tail detachment in NSCs of 1 day differentiation are more rapid, along with the concurrent enlarged size of FAs at the leading edge, leading to the most effective chemotactic response to VEGF. Collectively, these results indicate that the dynamics of FAs and reorganization of F‐actin in NSCs that undergo directional migration correlate closely with their differentiation states, contributing to the different chemotactic responses of these cells to VEGF. J. Cell. Biochem. 114: 1744–1759, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Many genetic cascades are conserved in evolution, yet they trigger different responses and hence determine different cell fates at specific times and positions in development. At stage 10 of oogenesis, mirror is expressed in anterior-dorsal follicle cells, and we show that this is dependent upon the Gurken signal from the oocyte. The fringe gene is expressed in a complementary pattern in posterior-ventral follicle cells at the same stage. Ectopic expression of mirror represses fringe expression, thus linking the epidermal growth factor receptor (EGFR) signalling pathway to the Fringe signalling pathway via Mirror. The EGFR pathway also triggers the cascade that leads to dorsal-ventral axis determination in the embryo. We used twist as an embryonic marker for ventral cells. Ectopic expression of mirror in the follicle cells during oogenesis ultimately represses twist expression in the embryo, and leads to similar phenotypes to the ectopic expression of the activated form of EGFR. Thus, mirror also controls the Toll signalling pathway, leading to Dorsal nuclear transport. In summary, we show that the Mirror homeodomain protein provides a link that coordinates the Gurken/EGFR signalling pathway (initiated in the oocyte) with the Fringe/Notch/Delta pathway (in follicle cells). This coordination is required for epithelial morphogenesis, and for producing the signal in ventral follicle cells that determines the dorsal/ventral axis of the embryo.  相似文献   

13.
Actin filament dynamics at the cell membrane are important for cell-matrix and cell-cell adhesions and the protrusion of the leading edge. Since actin filaments must be connected to the cell membrane to exert forces but must also detach from the membrane to allow it to move and evolve, the balance between actin filament tethering and detachment at adhesion sites and the leading edge is key for cell shape changes and motility. How this fine tuning is performed in cells remains an open question, but possible candidates are the Drosophila enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins, which localize to dynamic actin structures in the cell. Here we study VASP-mediated actin-related proteins 2/3 (Arp2/3) complex-dependent actin dynamics using a substrate that mimics the fluid properties of the cell membrane: an oil-water interface. We show evidence that polymerization activators undergo diffusion and convection on the fluid surface, due to continual attachment and detachment to the actin network. These dynamics are enhanced in the presence of VASP, and we observe cycles of catastrophic detachment of the actin network from the surface, resulting in stop-and-go motion. These results point to a role for VASP in the modulation of filament anchoring, with implications for actin dynamics at cell adhesions and at the leading edge of the cell.  相似文献   

14.
Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes.  相似文献   

15.
Epidermal growth factor receptor (EGFR) plays a critical role in the promotion of epithelial cell proliferation and migration. Previous studies have suggested a cooperative role between EGFR and integrin signalling pathways that enable efficient adhesion and migration but the mechanisms controlling this remain poorly defined. Here, we show that EGFR forms a complex with focal adhesion kinase in epithelial cells. Surprisingly, this complex enhances local Src activity at focal adhesions to promote phosphorylation of the cytoskeletal adaptor protein ezrin at Y478, leading to actomyosin contractility, suppression of focal adhesion dynamics and slower migration. We further demonstrate this regulation of Src is due to the suppression of PTP1B activity. Our data provide new insight into EGF-independent cooperation between EGFR and integrins and suggest transient interactions between these kinases at the leading edge of cells act to spatially control signalling to permit efficient motility.  相似文献   

16.
The coordinated migration and fusion of epithelial sheets is a crucial morphogenetic tool used on numerous occasions during the normal development of an embryo and re-activated as part of the wound healing response. Drosophila dorsal closure, whereby a hole in the embryonic epithelium is zipped closed late in embryogenesis, serves as an excellent, genetically tractable model for epithelial migration. Using live confocal imaging, we have dissected multiple roles for the small GTPase Rac in this process. We show that constitutive activation of Rac1 leads to excessive assembly of lamellipodia and precocious halting of epithelial sweeping, possibly through premature activation of contact-inhibition machinery. Conversely, blocking Rac activity, either by loss-of-function mutations or expression of dominant negative Rac1, disables the assembly of both actin cable and protrusions by epithelial cells. Movies of mutant embryos show that continued contraction of the amnioserosa is sufficient to draw the epithelial edges towards one another, allowing the zipper machinery to bypass non-functioning regions of leading edge. In addition to illustrating the key role of Rac in organization of leading edge actin, loss-of-function mutants also provide substantive proof that Rac acts upstream in the Jun N-terminal kinase (JNK) cascade to direct epithelial cell shape changes during dorsal closure.  相似文献   

17.
Stimulation of metastatic MTLn3 cells with epidermal growth factor (EGF) causes a rapid and transient increase in actin nucleation activity resulting from the appearance of free barbed ends at the extreme leading edge of extending lamellipods. To investigate the role of cofilin in EGF-stimulated actin polymerization and lamellipod extension in MTLn3 cells, we examined in detail the temporal and spatial distribution of cofilin relative to free barbed ends and characterized the actin dynamics by measuring the changes in the number of actin filaments. EGF stimulation triggers a transient increase in cofilin in the leading edge near the membrane, which is precisely cotemporal with the appearance of free barbed ends there. A deoxyribonuclease I binding assay shows that the number of filaments per cell increases by 1.5-fold after EGF stimulation. Detection of pointed ends in situ using deoxyribonuclease I binding demonstrates that this increase in the number of pointed ends is confined to the leading edge compartment, and does not occur within stress fibers or in the general cytoplasm. Using a light microscope severing assay, cofilin's severing activity was observed directly in cell extracts and shown to be activated after stimulation of the cells with EGF. Microinjection of function-blocking antibodies against cofilin inhibits the appearance of free barbed ends at the leading edge and lamellipod protrusion after EGF stimulation. These results support a model in which EGF stimulation recruits cofilin to the leading edge where its severing activity is activated, leading to the generation of short actin filaments with free barbed ends that participate in the nucleation of actin polymerization.  相似文献   

18.
Modulation of epithelial tubule formation by Rho kinase   总被引:4,自引:0,他引:4  
We have developed a model system for studying integrin regulation of mammalian epithelial tubule formation. Application of collagen gel overlays to Madin-Darby canine kidney (MDCK) cells induced coordinated disassembly of junctional complexes that was accompanied by lamellipodia formation and cell rearrangement (termed epithelial remodeling). In this study, we present evidence that the Rho signal transduction pathway regulates epithelial remodeling and tubule formation. Incubation of MDCK cells with collagen gel overlays facilitated formation of migrating lamellipodia with membrane-associated actin. Inhibitors of myosin II and actin prevented lamellipodia formation, which suggests that actomyosin function was involved in regulation of epithelial remodeling. To determine this, changes in myosin II distribution, function, and phosphorylation were studied during epithelial tubule biogenesis. Myosin II colocalized with actin at the leading edge of lamellipodia thereby providing evidence that myosin is important in epithelial remodeling. This possibility is supported by observations that inhibition of Rho kinase, a regulator of myosin II function, alters formation of lamellipodia and results in attenuated epithelial tubule development. These data and those demonstrating myosin regulatory light-chain phosphorylation at the leading edge of lamellipodia strongly suggest that Rho kinase and myosin II are important modulators of epithelial remodeling. They support a hypothesis that the Rho signal transduction pathway plays a significant role in regulation of epithelial tubule formation. signaling pathway; polarity  相似文献   

19.
Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied; however, in vivo, cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in the collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about six to ten epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells that they carry along. Disruption of planar polarity signalling causes abnormalities in actin-rich processes on the cell surface and leads to less-efficient migration. This is apparently due, in part, to a loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that, during collective cell migration, the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics.  相似文献   

20.
At the leading edge of a motile cell, actin polymerizes in close apposition to the plasma membrane. Here we ask how the machinery for force generation at a leading edge is established de novo after the global depolymerization of actin. The depolymerization is accomplished by latrunculin A, and the reorganization of actin upon removal of the drug is visualized in Dictyostelium cells by total internal reflection fluorescence microscopy. The actin filament system is reorganized in three steps. First, F-actin assembles into globular complexes that move along the bottom surface of the cells at velocities up to 10 microm/min. These clusters are transient structures that eventually disassemble, fuse, or divide. In a second step, clusters merge into a contiguous zone at the cell border that spreads and gives rise to actin waves traveling on a planar membrane. Finally, normal cell shape and motility are resumed. These data show that the initiation of actin polymerization is separated in Dictyostelium from front protrusion, and that the coupling of polymerization to protrusion is a later step in the reconstitution of a leading edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号