首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the chemical structure of the specific determinant in the mannan of Candida albicans M-1012 (serotype A) strain. Acetolysis of the mannan, obtained by alkali extraction and purified as the copper complex, gave mannose and six oligosaccharides (from di- to hexasaccharide) and a small amount of a heptasaccharide. We examined the inhibition by these oligosaccharides up to hexaose of the precipitin reaction between anti-factor 6 serum specific for serotype A and homologous mannan, and found that the mannohexaose was the most effective inhibitor. These, and results obtained by proton magnetic resonance (PMR) spectroscopy, methylation analysis, and other structural studies, suggest that the main component of this hexaose consists of one terminal alpha (1-3) linkage in addition to four alpha (1-2) linkages, and that this alpha (1-3)-containing mannohexaose may be responsible for the specificity of antigenic factor 6. Further results obtained by analyses of polarimetry, PMR spectroscopy, and chromium trioxide oxidation-methylation of C. albicans M-1012 mannan has a beta-linkage in addition to alpha-linkages, and that the mode of the beta-linkage is mainly (1-6) linkage. Further evidence obtained by Smith degradation-methylation analysis and by quantitative precipitin reactions of intact and acid-degraded mannan suggests that the antigenic determinant of antigenic factor 6 may be bound, via the beta (1-6) linkage, to C-6 of mannose residues involved in oligosaccharide side chains of serotype A mannan.  相似文献   

2.
A rough-colony mutant of Candida albicans was isolated after ultraviolet mutagenesis. The mutant contained approximately half the normal amount of the cell wall mannan, the acetolysis pattern of which was indistinguishable from that of the wild-type counterpart. However, the extent of phosphorylation in the mutant mannan was about 12% of the value for wild type.  相似文献   

3.
4.
Considering the importance of proteins in the structure and function of the cell wall of Candida albicans, we analyzed the cell wall subproteome of this important human pathogen by LC coupled to MS (LC-MS) using different protein extraction procedures. The analyzed samples included material extracted by hydrogen fluoride-pyridine (HF-pyridine), and whole SDS-extracted cell walls. The use of this latter innovative procedure gave similar data as compared to the analysis of HF-pyridine extracted proteins. A total of 21 cell wall proteins predicted to contain a signal peptide were identified, together with a high content of potentially glycosylated Ser/Thr residues, and the presence of a GPI motif in 19 of them. We also identified 66 "atypical" cell wall proteins that lack the above-mentioned characteristics. After tryptic removal of the most accessible proteins in the cell wall, several of the same expected GPI proteins and the most commonly found "atypical" wall proteins were identified. This result suggests that proteins are located not only at the cell wall surface, but are embedded within the cell wall itself. These results, which include new identified cell wall proteins, and comparison of proteins in blastospore and mycelial walls, will help to elucidate the C. albicans cell wall architecture.  相似文献   

5.
3-Aminopropyl glycosides of alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyra-nosyl-(1-->2)-alpha-D-mannopyranose, alpha-D-mannopyranosyl-(1-->3)-alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranosyl-(l -- 2)-alpha-D-mannopyranose, and alpha-D-mannopyranosyl-(1-->2)-[alpha-D-mannopyranosyl-(1-->3)]-alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranose were efficiently synthesized starting from ethyl 2-O-acetyl(benzoyl)-3,4,6-tri-O-benzyl-l-thio-alpha-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2-O-benzoyl-1-thio-alpha-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2,3-di-O-benzoyl-l-thio-alpha-D-mannopyranoside, and 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl bromide. The oligosaccharide chains synthesized correspond to the three structural types of side chains of mannan from Candida albicans cell wall. A conjugate of the third pentasaccharide with bovine serum albumin was prepared using the squarate method.  相似文献   

6.
Chemical structures of manno-oligosaccharides, from biose to heptaose, released from the phosphomannan of Candida albicans NIH B-792 strain (serotype B) by mild acid hydrolysis were investigated. The results of 1H NMR, 13C NMR, and fast atom bombardment mass spectrometry analyses confirmed that these manno-oligosaccharides belong to a homologous beta-1,2-linked series. Although chemical shifts of 1H NMR patterns of these oligosaccharides were considerably too complicated to be assigned, their 13C NMR patterns were sufficiently simple to be interpreted, exhibiting a regular increase of downfield shift of ppm values of the C-1 atom from each mannopyranose residue in proportion to their molecular weights. In order to determine the whole chemical structure of the parent phosphomannan, the acid-stable domain was subjected to acetolysis and then enzymolysis with the Arthrobacter GJM-1 alpha-mannosidase and the resultant manno-oligosaccharides were investigated for their chemical structures by 1H NMR spectroscopy. The results of a precipitin-inhibition test using the beta-1,2-linked manno-oligosaccharides, from biose to hexaose, in comparison with the corresponding isomers containing alpha-1,2 linkage with small amounts of alpha-1,3 linkage, indicated that the haptens possessing the former linkage exhibited much higher inhibitory effects than the corresponding isomers containing the latter linkages did. Based on the present findings, a chemical structure of the phosphomannan of this C. albicans strain was proposed.  相似文献   

7.
We conducted a structural analysis of the cell wall mannan-protein complex (mannan) isolated from a pathogenic yeast, Candida glabrata IFO 0622 strain. The chemical structure of mannobiose released from this mannan by treatment with 10 mM HCl at 100 degrees C for 1 h was identified as Manp beta 1-2Man. The treatment of this mannan with 100 mM NaOH at 25 degrees C for 18 h gave a mixture of alpha-1,2- and alpha-1,3-linked oligosaccharides, from tetraose to biose, and mannose. The acid- and alkali-stable mannan moiety was subjected to mild acetolysis with a 100:100:1 (v/v) mixture of (CH3CO)2O, CH3COOH, and H2SO4 at 40 degrees C for 36 h. The resultant three novel oligosaccharides, tetraose, hexaose, and heptaose, were identified as Manp beta 1-2Manp alpha 1-2Manp alpha 1-2Man, Manp alpha 1-2Manp alpha 1-2Manp alpha 1-6Manp alpha 1-2Manp alpha 1-2Man, and Manp alpha 1-3Manp alpha 1-2Manp alpha 1-2Manp alpha 1-6Manp alpha 1- 2Manp alpha 1-2Man, respectively, in addition to the three known oligosaccharides, Manp alpha 1-2Man, Manp alpha 1-2Manp alpha 1-2Man, and Manp alpha 1-3Manp alpha 1-2Manp alpha 1-2Man. A sequential analytical procedure involving partial acid hydrolysis with hot 0.3 M H2SO4, methylation, fast atom bombardment mass, and 1H NMR analyses was quite effective in the structural determination of the novel oligosaccharides. The results indicate that this mannan possesses a structure closely resembling that of Saccharomyces cerevisiae X2180-1A wild type strain, with the presence of small amounts of oligomannosyl residue, Manp beta 1-2Manp alpha 1-X, corresponding to one of the epitopes dominating serotype-A specificity of Candida spp., in addition to branches corresponding to hexaose and heptaose each containing one intermediary alpha-1,6 linkage.  相似文献   

8.
The antigenicity of Candida lusitaniae cells was found to be the same as that of Candida albicans serotype A cells, i.e. both cell wall mannans react with factors 1, 4, 5, and 6 sera of Candida Check. However, the structure of the mannan of C. lusitaniae was significantly different from that of C. albicans serotype A, and we found novel beta-1,2 linkages among the side-chain oligosaccharides, Manbeta1-->2Manbeta1--> 2Manalpha1-->2Manalpha1-->2Man (LM5), and Manbeta1-->2Man-beta1-->2Manbeta1-->2Manalpha1-->2Manalpha1-->2Man (LM6). The assignment of these oligosaccharides suggests that the mannoheptaose containing three beta-1,2 linkages obtained from the mannan of C. albicans in a preceding study consisted of isomers. The molar ratio of the side chains of C. lusitaniae mannan was determined from the complete assignment of its H-1 and H-2 signals and these signal dimensions. More than 80% of the oligomannosyl side chains contained beta-1,2-linked mannose units; no alpha-1,3 linkages or alpha-1,6-linked branching points were found in the side chains. An enzyme-linked immunosorbent inhibition assay using oligosaccharides indicated that LM5 behaves as factor 6, which is the serotype A-specific epitope of C. albicans. Unexpectedly, however, LM6 did not act as factor 6.  相似文献   

9.
The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, because a detailed characterization at the structural level is lacking. Antigen-presenting dendritic cells (DCs), strategically located at mucosal surfaces and in the skin, may play an important role in anti-Candida protective immunity. However, the contribution of the various Candida-associated molecular patterns and their counter-receptors to DC function remains unknown. Here, we demonstrate that two C-type lectins, DC-SIGN and the macrophage mannose receptor, specifically mediate C. albicans binding and internalization by human DCs. Moreover, by combining a range of C. albicans glycosylation mutants with receptor-specific blocking and cytokine production assays, we determined that N-linked mannan but not O-linked or phosphomannan is the fungal carbohydrate structure specifically recognized by both C-type lectins on human DCs and directly influences the production of the proinflammatory cytokine IL-6. Better insight in the carbohydrate recognition profile of C-type lectins will ultimately provide relevant information for the development of new drugs targeting specific fungal cell wall antigens.  相似文献   

10.
11.
The structure of the cell-wall mannan from the J-1012 (serotype A) strain of the polymorphic yeast Candida albicans was determined by acetolysis under mild conditions followed by HPLC and sequential NMR experiments. The serotype A mannan contained beta-1,2-linked mannose residues attached to alpha-1,3-linked mannose residues and alpha-1,6-linked branching mannose residues. Using a beta-1,2-mannosyltransferase, we synthesized a three-beta-1,2-linkage-containing mannoheptaose and used it as a reference oligosaccharide for 1H-NMR assignment. On the basis of the results obtained, we derived an additivity rule for the 1H-NMR chemical shifts of the beta-1,2-linked mannose residues. The morphological transformation of Candida cells from the yeast form to the hyphal form induced a significant decrease in the phosphodiesterified acid-labile beta-1,2-linked manno-oligosaccharides, whereas the amount of acid-stable beta-1,2 linkage-containing side chains did not change. These results suggest that the Candida mannan in candidiasis patients contains beta-1,2-linked mannose residues and that they behave as a target of the immune system.  相似文献   

12.
The immunochemical properties between phospho-D-mannan-protein complexes of yeast (Y) and mycelial (M) forms of Candida albicans NIH A-207 (serotype A) strain were compared. Hydrolysis of the Y-form complex gave a mixture of beta-(1----2)-linked D-mannooligosaccharides consisting mainly of tri- and tetra-ose, whereas the M-form complex gave preponderantly D-mannose. The antiserum against Y-form cells exhibited a lower reactivity with the M-form than with the Y-form complex, whereas the antiserum to M-form cells could not distinguish significantly between both complexes. Moreover, these acid-modified complexes showed lower antibody-precipitating effect than each corresponding intact complex against antisera of Y- and M-form cells. Digestion of the acid-modified Y- and M-form complexes with the Arthrobacter GJM-1 strain alpha-D-mannosidase yielded 35- and 40-% degradation products, respectively. Acetolysis of each modified complex under mild conditions gave the same D-mannohexaose, beta-D-Manp-(1----2)-beta-D-Manp-(1----2)-alpha-D-Manp -(1----2)-alpha-D-Manp- (1----2)-alpha-D-Manp-(1----2)-D-Man. Because the complexes of Y- and M-form cells of C. albicans NIH B-792 (serotype B) strain did not give any hexaose fraction containing beta-(1----2) linkages, the presence of this hexaose can be regarded as one of the dominant characteristics of the serotype-A specificity of C. albicans spp.  相似文献   

13.
14.
Antibody response to Candida albicans cell wall antigens   总被引:3,自引:0,他引:3  
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.  相似文献   

15.
16.
The human pathogen Candida albicans encodes at least three putative two-component histidine kinase signal transduction proteins, including Chk1p and a response regulator protein (Cssk1p). Strains deleted in CHK1 are avirulent in a murine model of hematogenously disseminated disease. The specific function of Chk1p has not been established, but hyphae of the chk1 mutant exhibit extensive flocculation while yeast forms are less adherent to reconstituted human esophageal tissue, indicating that this protein may regulate cell surface properties. Herein, we analyze glucan, mannan and chitin profiles in strains deleted in chk1 (CHK21) compared to a gene-reconstituted strain (CHK23) and a parental strain CAF2. Total alkali-soluble hexose from the cell wall of the chk1 mutant (strain CHK21) was significantly reduced. Western blots of cell wall extracts from CHK21, CHK23 and CAF2 reacted with a Mab to the acid-stable mannan fraction revealed extensive staining of lower molecular mass species in strain CHK21 only. FACE (fluorophore assisted carbohydrate electrophoresis) was used to characterize the oligosaccharide side chains of beta-eliminated (O-linked), acid-hydrolyzed (acid-labile phosphomannan) and acetolysis (acid-stable mannan) extracted fractions of total mannan. The profiles of O-linked as well as the acid-labile oligosaccharides were similar in both CAF2 and CHK21, but the acid-stable oligosaccharide side chains were significantly truncated. We also characterized the beta-glucan from each strain using NMR, and found that both the degree of polymerization and the ratio of (1-3)/(1-6) linkages was lower in CHK21 relative to wild-type cells. The sensitivity of CHK21 to antifungal drugs and inhibitors was unaffected. In summary, our data have identified a new function for a histidine kinase two-component signal protein in a human pathogenic fungus.  相似文献   

17.
Polyclonal antibodies (pAbs) and monoclonal antibodies (mAbs), raised against mannoprotein components from Candida albicans ATCC 26555 (serotype A) blastoconidia and mycelial cell walls, were used to investigate antigenic similarities among wall mannoproteins from other C. albicans serotype A and B strains, and from C. tropicalis and C. guilliermondii. Radioactively labelled walls isolated from cells grown at either 28 degrees C or 37 degrees C were digested with a beta-glucanase complex (Zymolyase 20T) to release cell-wall-bound mannoproteins. Numerous molecular species with different electrophoretic mobilities were released from the various isolates. Differences appeared to be related to both the organism and the growth temperature. Among the major protein components solubilized were mannoproteins larger than 100 kDa (high molecular mass mannoproteins), heterogeneous in size in most cases. Antigenic homology was detected among the cell wall high molecular mass mannoproteins of the two C. albicans serotype A isolates, whereas significant qualitative and quantitative differences were detected between serotype A and serotype B cell-wall-bound antigenic profiles. Moreover, C. tropicalis and C. guilliermondii wall antigenic determinants were not recognized by the preparations of pAbs and mAbs raised against C. albicans walls. A mannoprotein with a molecular mass of 33-34 kDa was present in the enzymic wall digests of all the organisms studied. When probed with pAbs raised against the protein moiety of the 33 kDa cell wall mannoprotein of Saccharomyces cerevisiae, antigenic cross-reactivity was observed in all cases except C. tropicalis. There appear to be significant antigenic differences between the mannoproteins of different isolates of C. albicans, and between those of C. albicans and other Candida species.  相似文献   

18.
Blastospores of Candida albicans were readily agglutinated by Concanavalin A (Con A) owing to the specific binding of this lectin to the mannan receptors of the cell surface. When mannan was extracted from the cell wall by neutral buffers, alkali and acid, the agglutination was decreased or lost depending on the degree of extraction. A relatively mild alkali treatment was sufficient to derange the multilayered wall organization and transform it into a uniform, medium-density structure having about the same thickness as the untreated wall. After a more drastic extraction, all the electron-dense components of the wall were lost, the residual, alkali-insoluble wall fabric being completely electron-transparent and of about the same thickness as the inner wall region of untreated cells. Thiol-reducing agents like mercaptoethanol or dithiothreitol also extracted wall materials, an effect which was enhanced by pronase. After dithiothreitol-pronase treatment, the outer wall layers were removed but the inner wall region was not apparently damaged and some electron-dense components remained. None of these treatments significantly affected blastospore agglutination by Con A--this was reduced (but not abolished) only by the sequential action of pronase and helicase, which led to sphaeroplast formation. These sphaeroplasts showed a varied amount of residual wall consisting of evenly distributed, fibrogranular components. Two main conclusions were drawn from these results: (i) mannan polymers extend throughout the wall of the blastospore of C. albicans; (ii) the layering of the wall, as seen by ordinary fixation and staining for electron microscopy, essentially reflects the distribution of the various alkali-soluble complexes, at different levels, both over and in the rigid, glucan-chitin matrix.  相似文献   

19.
The CSH1 gene product is the first protein implicated to affect the phenotype of cell surface hydrophobicity in Candida albicans. Ablation of expression of CSH1 resulted in a 75% loss of the cell surface hydrophobicity (CSH) phenotype. When the C. albicans csh1 knockout derivative was cultured from frozen stocks, it had reacquired CSH levels similar to the parent strain and isogenic reintegrant in the absence of Csh1p re-expression through an unknown mechanism. Prior to reacquisition of CSH, the knockout was less adherent to fibronectin than the parent. Comparison of the csh1 knockout and CSH1 reintegrant in a hematogenous dissemination model allows analysis of Csh1p contribution to virulence using matched strains with similar levels of CSH. No statistical significance between the knockout and reintegrant was found in virulence based on median day of survival, although a reproducible delay in onset of lethal infection for the knockout was observed. A modest difference in mucosal colonization in a vaginal infection model was also observed between the knockout and reintegrant. The present study demonstrates that Csh1p contributes to virulence of C. albicans in mice, but other gene products also contribute to the CSH phenotype and virulence.  相似文献   

20.
Secretion of glycoproteins through the cell wall of Candida albicans   总被引:1,自引:0,他引:1  
A monoclonal antibody raised against the pathogenic phase of Candida albicans has been coupled to colloidal gold and used to detect the corresponding epitope in cell wall and culture medium of blastoconidia grown as germ tubes in vitro. Immunogold silver staining of Western blots of culture supernatants demonstrated release of the epitope into the culture medium. The stain revealed 3 well defined bands of 205,000, 66,000 and 30,000 Mr and a smear from the top of the gel to an Mr of 120,000. Immunoelectron microscopy of ultrathin frozen sections of the corresponding growth forms showed that epitope accumulated first in the periplasmic space, generally corresponding to plasmalemma invaginations within the cytoplasm. From these sites, it was possible to follow continuous lines of epitope distribution through the cell wall and antigenic extrusion at the cell surface. In tangential sections of intensely labeled walls, these preferential excretion ways appeared to be organized as a parallel network. Antigen emergence at the cell surface corresponded to patches of material which tended to coalesce in an easily dissociated layer, probably corresponding to the fuzzy coat. These experiments demonstrate, for the first time, preferential ways for cellular secretion through the yeast cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号