共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of low density lipoprotein on vascular smooth muscle cells involves increase in intracellular pH 总被引:1,自引:0,他引:1
E Koh S Morimoto T Nabata Y Miyashita S Kitano R Morita T Ogihara 《Biochemistry international》1990,20(1):127-133
The effect of low density lipoprotein (LDL) on the intracellular pH (pHi) of vascular smooth muscle cells (VSMC) was investigated using a fluorescent pH indicator, 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). LDL and apoprotein B (apo-B), a binding protein for the LDL receptor, caused transient acidification followed by Na(+)-dependent and amiloride-sensitive alkalization of the cells due to stimulation of Na+/H+ exchanger. NH4Cl also caused intracellular alkalization, but independently of extracellular Na+. LDL, apo-B and NH4Cl all stimulated thymidine incorporation. These results indicate that the binding of LDL to its receptor stimulates Na+/H+ exchanger, resulting in alkalization of VSMC and suggest that this may function as a massage in stimulation of DNA synthesis evoked by LDL. 相似文献
2.
The effect of platelet-activating factor (PAF) on polyphosphoinositide metabolism and 45Ca2+ efflux was examined in a vascular smooth muscle cell line (A7r5). PAF stimulated a rapid but transient production of inositol trisphosphate and inositol bisphosphate which, in the presence of lithium, resulted in an accumulation of inositol monophosphate. In addition, PAF induced a rapid efflux of 45Ca2+ from preloaded cells, an effect which was concentration-dependent. These data suggest that PAF mobilizes intracellular Ca2+ via the production of inositol trisphosphate. 相似文献
3.
Mechanisms of lysophosphatidic acid-induced increase in intracellular calcium in vascular smooth muscle cells 总被引:3,自引:0,他引:3
Although lysophosphatidic acid (LPA) is known to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in vascular smooth muscle cells (VSMCs), the mechanisms of [Ca2+]i mobilization by LPA are not fully understood. In the present study, the effect of LPA on [Ca2+]i mobilization in cultured A10 VSMCs was examined by Fura-2 fluorescence technique. The expression of LPA receptors was studied by immunostaining. LPA was observed to increase [Ca2+]i in a concentration-dependent manner; this increase was dependent on the concentration of extracellular Ca2+. Both sarcolemmal (SL) Na(+)-Ca2+ exchange inhibitors (amiloride, Ni2+ and KB-R7943) and Na(+)-H+ exchange inhibitor (MIA) as well as SL store-operated Ca2+ channel (SOC) antagonists (SK&F 96365, tyrphostin A9 and gadolinium), unlike SL Ca2+ channel antagonists (verapamil and diltiazem), inhibited the LPA-induced increase in [Ca2+]i. In addition, sarcoplasmic reticulum (SR) Ca2+ channel blocker (ryanodine), SR Ca2+ channel opener (caffeine), SR Ca2+ pump ATPase inhibitor (thapsigargin) and inositol 1,4,5-trisphosphate (InsP3) receptor antagonists (xestospongin and 2-aminoethoxydiphenyl borate) were found to inhibit the LPA-induced Ca2+ mobilization. Furthermore, phospholipase C (PLC) inhibitor (U 73122) and protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) attenuated the LPA-induced increase in [Ca2+]i. These results indicate that Ca2+ mobilization by LPA involves extracellular Ca2+ entry through SL Na(+)-Ca2+ exchanger, Na(+)-H+ exchanger and SL SOCs. In addition, ryanodine-sensitive and InsP(3)-sensitive intracellular Ca2+ pools may be associated with the LPA-induced increase in [Ca2+]i. Furthermore, the LPA-induced [Ca2+]i mobilization in VSMCs seems to be due to the activation of both PLC and PKC. 相似文献
4.
Rios EJ Fallon M Wang J Shimoda LA 《American journal of physiology. Lung cellular and molecular physiology》2005,289(5):L867-L874
Chronic hypoxia (CH), caused by many lung diseases, results in pulmonary hypertension due, in part, to increased muscularity of small pulmonary vessels. Pulmonary arterial smooth muscle cell (PASMC) proliferation in response to growth factors requires increased intracellular pH (pHi) mediated by activation of Na+/H+ exchange (NHE); however, the effect of CH on PASMC pHi homeostasis is unknown. Thus we measured basal pHi and NHE activity and expression in PASMCs isolated from mice exposed to normoxia or CH (3 wk/10% O2). pHi was measured using the pH-sensitive fluorescent dye BCECF-AM. NHE activity was determined from Na+-dependent recovery from NH4-induced acidosis, and NHE expression was determined by RT-PCR and immunoblot. PASMCs from chronically hypoxic mice exhibited elevated basal pHi and increased NHE activity. NHE1 was the predominate isoform present in mouse PASMCs, and both gene and protein expression of NHE1 was increased following exposure to CH. Our findings indicate that exposure to CH caused increased pHi, NHE activity, and NHE1 expression, changes that may contribute to the development of pulmonary hypertension, in part, via pH-dependent induction of PASMC proliferation. 相似文献
5.
Endothelin-1 increases intracellular calcium mobilization but not calcium uptake in rabbit vascular smooth muscle cells 总被引:3,自引:0,他引:3
R A Bialecki N J Izzo W S Colucci 《Biochemical and biophysical research communications》1989,164(1):474-479
Conflicting evidence has been reported regarding the role of endothelin-1, a potent vasconstrictor peptide, in stimulating extracellular calcium influx in rabbit vascular smooth muscle. The objective of this study was to elucidate the effects of endothelin-1 on transmembrane 45Ca2+ influx and intracellular calcium mobilization in cultured rabbit aortic smooth muscle cells. In calcium containing buffer, endothelin-1 induced a concentration-dependent 45Ca2+ efflux response over the range of 10 pM to 100 nM with an EC50 of approximately 60 pM. Maximum endothelin-stimulated 45Ca2+ efflux was not affected by the absence of extracellular calcium or the presence of 1 microM verapamil. Endothelin-1 did not induce transplasmalemmal 45Ca2+ uptake at times up to 30 min. These findings suggest that an alteration in intracellular calcium handling, rather than extracellular calcium influx, is responsible for the endothelin-stimulated increase in intracellular calcium concentration in rabbit aortic smooth muscle cells. 相似文献
6.
Tensile properties of fibroblasts (FBs) and vascular smooth muscle cells (VSMCs) of synthetic and contractile phenotypes were studied using a newly developed micro-tensile tester. FBs were obtained from the rabbit patellar tendon. Synthetic and contractile VSMCs were isolated from the rabbit thoracic aorta with an explant and an enzymatic digestion method, respectively. Each cell was attached to the fine tips of a pair of micropipettes with a cell adhesive and, then, stretched at the speed of 6 microm/sec. Load and length were obtained using a cantilever-type load cell and a VDA, respectively.FBs were broken at the load of 0.9 microN and the elongation to failure of 86 microm, and had the stiffness of 0.02 N/m. VSMCs were not broken even at 2.4 microN. The stiffness of synthetic and contractile VSMCs were 0.09 and 0.17 N/m, respectively. Such large different tensile properties among the three cells are attributable to the differences in components and cytoskeletal structures. 相似文献
7.
H Kawashima 《Biochemical and biophysical research communications》1990,166(2):709-714
The effect of parathyroid hormone on intracellular calcium concentration in vascular smooth muscle cells in culture was studied. Human PTH 1-34 (hPTH (1-34)) caused a transient rise in intracellular calcium in a dose-dependent manner at physiological concentrations. The effect of PTH was mimicked by dibutyryl cyclic AMP and inhibited by a PTH receptor antagonist. The effect of PTH was increased in parallel with extracellular calcium concentration and a sustained response was observed when extracellular calcium was 2 mM or higher. The PTH action was blocked by nisoldipin, a calcium antagonist, but not by ouabain, a Na, K-ATPase inhibitor. These data indicate that PTH increases intracellular calcium through its receptor via opening calcium channels. A possible role of this effect in the regulation of vascular tone is also discussed. 相似文献
8.
Magnesium regulates intracellular free ionized calcium concentration and cell geometry in vascular smooth muscle cells. 总被引:9,自引:0,他引:9
Regulatory effects of extracellular magnesium ions ([Mg2+]o) on intracellular free ionized calcium ([Ca2+]i) were studied in cultured vascular smooth muscle cells (VSMCs) from rat aorta by use of the fluorescent indicator fura-2 and digital imaging microscopy. With normal Mg2+ (1.2 mM)-containing incubation media, [Ca2+]i in VSMCs was 93.6 +/- 7.93 nM with a heterogeneous cellular distribution. Lowering [Mg2+]o to 0 mM or 0.3 mM (the lowest physiological range) resulted in 5.8-fold (579.5 +/- 39.99 nM) and 3.5-fold (348.0 +/- 31.52 nM) increments of [Ca2+]i, respectively, without influencing the cellular distribution of [Ca2+]i. Surprisingly, [Mg2+]o withdrawal induced changes of cell geometry in many VSMCs, i.e., the cells rounded up. However, elevation of [Mg2+]o up to 4.8 mM only induced slight decrements of [Ca2+]i (mean = 72.0 +/- 4.55 nM). The large increment of [Ca2+]i induced by [Mg2+]o withdrawal was totally inhibited when [Ca2+]o was removed. The data suggest that: (1) [Mg2+]o regulates the level of [Ca2+]i in rat aortic smooth muscle cells, and (2) [Mg2+] acts as an important regulatory ion by modulating cell shapes in cultured VSMc and their metabolism to control vascular contractile activities. 相似文献
9.
Manuel Sanchez-Fernandez George M. Katz Guilherme Suarez-Kurtz Gregory J. Kaczorowski John P. Reuben 《The Journal of membrane biology》1993,135(3):273-287
The known action of uridine triphosphate (UTP) to contract some types of vascular smooth muscle, and the present finding that it is more potent than adenosine triphosphate in eliciting an increase in cytosolic Ca2+ concentration in aortic smooth muscle, led us to investigate the mode of action of this nucleotide. With this aim, cultured bovine aorta cells were subjected to patch-clamp methodologies under various conditions. Nucleotide-induced variations in cytosolic Ca2+ were monitored by using single channel recordings of the high conductance Ca2+-activated K+ (Maxi-K) channel within on-cell patches as a reporter, and whole-cell currents were measured following perforation of the patch. In cells bathed in Na+-saline, UTP (>30 nm) induced an inward current, and both Maxi-K channel activity and unitary current amplitude of the Maxi-K channel transiently increased. Repetitive exposures elicited similar responses when 5 to 10 min wash intervals were allowed between challenges of nucleotide. Oscillations in channel activity, but not oscillation in current amplitude were frequently observed with UTP levels > 0.1 m. Cells bathed in K+ saline (150
m) were less sensitive to UTP (5-fold), and did not show an increase in unitary Maxi-K current amplitude. Since the increase in amplitude occurs due to depolarization of the cell membrane, a change in amplitude was not observed in cells previously depolarized with K+ saline. The enhancement of Maxi-K channel activity in the presence of UTP was not diminished by Ca2+ entry blockers or by removal of extracellular Ca2+. However, in the latter case, repetitive responses progressively declined. These observations, as well as data comparing the action of low concentrations of Ca2+ ionophores (<5 m) to that of UTP indicate that both agents elevate cytosolic Ca2+ by mobilization of this ion from intracellular pools. However, the Ca2+ ionophore did not cause membrane depolarization, and thus did not change unitary current amplitude. The effect of UTP on Maxi-K channel activity and current amplitude was blocked by pertussis toxin and by phorbol 12-myristate 13-acetate (PMA), but was not modified by okadaic acid, or by inhibitors of protein kinase C (PKC). Our data support a model in which a pyrimidinergic receptor is coupled to a G protein, and this interaction mediates release of Ca2+ from intracellular pools, presumably via the phosphatidyl inositol pathway. This also results in activation of membrane channels that give rise to an inward current and depolarization. Ultimately, smooth muscle contraction ensues. PKC does not appear to be directly involved, even though the UTP response is blocked by low nm levels of PMA. While the latter data implicate PKC in diminishing the UTP response, agents that inhibit either PKC or phosphatase activity did not prevent abolition of UTP responses by PMA, nor did they modify basal channel activity. 相似文献
10.
Vascular smooth muscle intracellular pH is maintained by the Na+/H+ and Cl–/HCO
3
–
antiporters. The Na+/H+ exchanger is a major route of H+ extrusion in most eukaryotic cells and is present in vascular smooth muscle cells in a similar capacity. It extrudes H– into the extracellular space in exchange for Na+. The Cl–/HCO
3
–
exchanger plays an analogous role to lower the pH of vascular smooth muscle cells when increases in intracellular pH occur. Its activity has also been demonstrated in A7r5 and A10 vascular smooth muscle cells. The Na+/H+ exchanger is regulated by a number of agents which act through inositol trisphosphate/diacylglycerol, to stimulate the antiporter. Calcium-calmodulin dependent protein kinase may also activate the antiporter in vivo. Phosphorylation of the Cl–/HCO
3
–
exchanger has also been observed but its physiological role is not known. Both these antiporters exist in the plasma membrane as integral proteins with free acidic cytoplasmic termini. These regions may be important in sensing changes in intracellular pH, to which these antiporters respond.Abbreviations CaM
Calmodulin
- DCCD
Dicylohexyl-Carbodiimide
- DG
Diacylglycerol
- DIDS-4
4-Diisthiocyanostilbene-2,2-Disulfonic Acid
- IP3
Inositol Trisphosphate
- PKC
protein Kinase C
- SITS-4
4-Acetamido-4-Isothiocyanstilbene-2,2-Disulfonate
- VSMC
Vascular Smooth Muscle Cell 相似文献
11.
Cyclosporin A augments angiotensin II-stimulated rise in intracellular free calcium in vascular smooth muscle cells. 总被引:3,自引:1,他引:3
下载免费PDF全文

Pretreatment of rat vascular smooth muscle cells with the immunosuppressive drug cyclosporin A caused concentration- and time-dependent increases in both the amplitude and duration of the angiotensin II-induced rise in cytosolic free calcium, as measured with quin 2. Cyclosporin A had no significant effect on basal quin 2 fluorescence. However, cyclosporin A increased the basal 45Ca2+ influx. This stimulation of 45Ca2+ influx was not blocked by nifedipine (10(-6) M). Cyclosporin A also augmented the angiotensin II-stimulated influx and efflux of 45Ca2+. These results demonstrate that cyclosporin A increases the permeability of the plasma membrane for Ca2+ and also augments the angiotensin II-induced increases in cytosolic free calcium. 相似文献
12.
Hashimoto T Kihara M Sato K Imai N Tanaka Y Sakai M Tamura K Hirawa N Toya Y Kitamura H Umemura S 《FEBS letters》2005,579(1):281-284
Although vascular smooth muscle cells (VSMCs) are widely used in cardiovascular research, their phenotypic change under various culture conditions is problematic to evaluate the experimental results obtained. The levels of angiotensin (Ang) type 1/2 (AT1/AT2) receptors as well as contractile and structural proteins are degraded through culture passages. The present study demonstrated that heparin recovered Ang receptors and differentiation markers, such as desmin, SM-22 and smooth muscle alpha-actin in VSMCs at the ninth passage. Heparin also potenciated Ang II-induced activation for ERK1/2 and p38. These results suggest a potential value of heparin-treated VSMCs as the model for analysis of Ang-mediated signal transduction under physiological condition. 相似文献
13.
Arsenic trioxide induces the apoptosis in vascular smooth muscle cells via increasing intracellular calcium and ROS formation 总被引:1,自引:0,他引:1
Jing-Xiu Li Ya-Qi Shen Ben-Zhi Cai Jing Zhao Xiaopeng Bai Yan-Jie Lu Xue-Qi Li 《Molecular biology reports》2010,37(3):1569-1576
The present study was designed to investigate whether arsenic trioxide induced the apoptosis in rat mesenteric arterial smooth
muscle cells (SMCs), which provides new insights into mechanisms of arsenic-related vascular diseases. Here, we found that
arsenic trioxide significantly decreased the viability of SMCs in a dose-dependent manner. In addition, higher level of arsenic
trioxide directly caused cellular necrosis. The Hoechst and AO/EB staining demonstrated that apoptotic morphological change
was presented in SMCs exposed to arsenic trioxide. The TUNEL assay displayed that more positive apoptotic signal appeared
in SMCs treated with arsenic trioxide. The following result showed that ROS formation was markedly increased in arsenic trioxide-treated
SMCs. Pretreatment with N-acetylcysteine, an anti-oxidant reagent, obviously attenuated the enhancement of ROS production and the reduction of cell
viability induced by arsenic trioxide in SMCs. Arsenic trioxide also enhanced free intracellular Ca2+ level in SMCs. BAPTA also significantly prevented the increased intracellular Ca2+ and decreased cell viability induced by arsenic trioxide in SMCs. These results suggested that arsenic trioxide obviously
induced apoptosis in SMCs, and its mechanism was partially associated with intracellular ROS formation and free Ca2+ increasing. 相似文献
14.
Smajilovic S Hansen JL Christoffersen TE Lewin E Sheikh SP Terwilliger EF Brown EM Haunso S Tfelt-Hansen J 《Biochemical and biophysical research communications》2006,348(4):1215-1223
Extracellular calcium (Ca(2+)(o)) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca(2+)(o) stimulates proliferation of the cells. The effects of Ca(2+)(o) were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca(2+)(o)-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca(2+)(o)-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium. 相似文献
15.
Inhibition of thrombin by heparin cofactor II (HCII) is accelerated by dermatan sulfate, heparan sulfate, and heparin. Purified HCII or defibrinated plasma was incubated with washed confluent cell monolayers, 125I-thrombin was added, and the rate of formation of covalent 125I-thrombin-inhibitor complexes was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Fibroblasts and porcine aortic smooth muscle cells accelerated inhibition of thrombin by HCII 2.3-7.5-fold but had no effect on other thrombin inhibitors in plasma. Human umbilical vein endothelial cells and mouse macrophage-derived cells did not accelerate the thrombin-HCII reaction. IMR-90 normal human fetal lung fibroblasts treated with heparinase or heparitinase accelerated the thrombin-HCII reaction to the same degree as untreated cells. In contrast, treatment with chondroitinase ABC almost totally abolished the ability of these cells to activate HCII while chondroitinase AC had little or no effect, suggesting that dermatan sulfate was responsible for the activity observed. [35S]Sulfate-labeled proteoglycans were isolated from IMR-90 fibroblast monolayers and conditioned medium and fractionated into two peaks on Sepharose CL-2B. The lower Mr proteoglycans contained 74-76% dermatan sulfate and were 11-25 times more active with HCII than the higher Mr proteoglycans which contained 68-97% heparan sulfate. The activity of the lower Mr proteoglycans decreased 70-90% by degradation of the dermatan sulfate component with chondroitinase ABC. These results confirm that dermatan sulfate proteoglycans are primarily responsible for activation of HCII by IMR-90 fibroblasts. We suggest that HCII may inhibit thrombin when plasma is exposed to vascular smooth muscle cells or fibroblasts. 相似文献
16.
Serotonin-induced cytosolic free calcium transients in cultured vascular smooth muscle cells 总被引:1,自引:0,他引:1
H Kanaide M Hasegawa S Kobayashi M Nakamura 《Biochemical and biophysical research communications》1987,143(2):532-538
Serotonin induced a transient elevation in the levels of cytosolic calcium in cultured rat vascular smooth muscle cells. Ketanserin, a selective antagonist of serotonin 2 receptors, dose-dependently inhibited the elevation of cytosolic calcium induced by serotonin, and ultimately unmasked a serotonin-induced decrease in the levels of cytosolic calcium. These observations show that serotonin has direct and dual effects, that is, it increases and decreases cytosolic free calcium concentrations in vascular smooth muscle cells, in culture. Knowledge of such events is important because serotonergic inhibitors may prove to be useful drugs for treating clinical hypertension and vasospastic disorders. 相似文献
17.
Ibe BO Portugal AM Chaturvedi S Raj JU 《American journal of physiology. Lung cellular and molecular physiology》2005,288(5):L879-L886
Circulating levels of platelet-activating factor (PAF) are high in the fetus, and PAF is active in maintaining high PVR in fetal hypoxia (Ibe BO, Hibler S, Raj J. J Appl Physiol 85: 1079-1085, 1998). PAF synthesis by fetal pulmonary vascular smooth muscle cells (PVSMC) is high in hypoxia, but how oxygen tension affects PAF receptor (PAF-r) binding in PVSMC is not known. We studied the effect of oxygen tension on PAF-r binding and signaling in fetal PVSMC. PAF binding was saturable. PAF-r density (B(max): fmol/10(6) cells; means +/- SE, n = 6), 25.2 +/- 0.77 during hypoxia (Po(2) <40 Torr), was higher than 13.9 +/- 0.44 during normoxia (Po(2) approximately 100 Torr). K(d) was twofold lower in hypoxia than normoxia. PAF-r protein expression, 35-40% greater in hypoxia, was inhibited by cycloheximide, a protein synthesis inhibitor, suggesting translational regulation. IP(3) release, an index of PAF-r-mediated cell signaling, was greater in hypoxia (EC(50): hypoxia, 2.94 +/- 0.61; normoxia, 5.85 +/- 0.51 nM). Exogenous PAF induced 50-90% greater intracellular calcium flux in cells during hypoxia, indicating hypoxia augments PAF-r-mediated cell signaling. PAF-r phosphorylation, with or without 5 nM PAF, was 40% greater in hypoxia. These data show 1) hypoxia upregulates PAF-r binding, PAF-r phosphorylation, and PAF-r-mediated intracellular signaling, evidenced by augmented IP(3) production and intracellular Ca(2+) flux; and 2) hypoxia-induced PAF-r phosphorylation results in activation of PAF-r-mediated signal transduction. The data suggest the fetal hypoxic environment facilitates PAF-r binding and signaling, thereby promoting PAF-mediated pulmonary vasoconstriction and maintenance of high PVR in utero. 相似文献
18.
The effect of neuropeptide Y (NPY) on cytosolic free Ca2+ concentration ([Ca2+]i) was studied in cultured smooth muscle cells from porcine aorta (PASMC) and compared with the effect of bradykinin (BK) and angiotensin II (ATII) on [Ca2+]i. All peptides induced dose-dependent and transient rises in [Ca2+]i which were not blocked by extracellular EGTA, but the NPY response was different from the others' as follows. First, the [Ca2+]i rise induced by NPY was not as rapid as that induced by BK or ATII. Second, pertussis toxin abolished the [Ca2+]i rise induced by NPY, but not by BK or ATII. Third, following initial treatment with BK, PASMC were able to respond to NPY, but not to ATII. Finally, BK and ATII, but not NPY, significantly increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation. Although NPY attenuated forskolin-induced accumulation of cyclic AMP, forskolin- and 3-isobutyl-1-methyl-xanthine-induced alterations in intracellular cyclic AMP did not affect the NPY-induced [Ca2+]i rise. These results suggest that NPY increases [Ca2+]i by a pertussis toxin-sensitive GTP binding protein-involved mechanism which is not mediated by the intracellular messengers such as Ins(1,4,5)P3 and cyclic AMP. 相似文献
19.
20.
Retention of LDL in the artery intima is mediated by extracellular matrix proteoglycans and plays an important role in the initiation of atherosclerosis. Compared with quiescent cells, proliferating smooth muscle cells secrete proteoglycans with elongated glycosaminoglycan side chains, which have an increased binding affinity to LDL. Because 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins) decrease smooth muscle cell proliferation, we hypothesized that statin exposure would decrease both the size and LDL binding affinity of vascular proteoglycans. Monkey aortic smooth muscle cells grown in culture were exposed to simvastatin (10 and 100 microM) and cerivastatin (0.1 and 1 microM), and newly secreted proteoglycans were quantified and characterized. Both simvastatin and cerivastatin caused a concentration-dependent reduction in cell growth and reduced 35SO4 incorporation into secreted proteoglycans, on both an absolute and a per cell basis. Interestingly, statin exposure increased the apparent molecular weight and hydrodynamic size of secreted proteoglycans. However, proteoglycans secreted from statin-exposed cells demonstrated a reduction in binding affinity to LDL. Thus, statins may induce atheroprotective changes in vascular proteoglycans and lower LDL retention in the vessel wall. These findings suggest a mechanism whereby statins may benefit atherosclerosis in a manner unrelated to serum LDL lowering. 相似文献