首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
We have reported recently that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+, K(+)-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. Here we examined the involvement of a GTP-binding protein(s) in PGE receptor-induced responses by using NaF. In the presence of Ca2+ in the medium, NaF stimulated the formation of all three inositol phosphates, i.e., inositol monophosphate, bisphosphate, and trisphosphate, linearly over 30 min in a dose-dependent manner (15-30 mM). This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. NaF also induced catecholamine release from chromaffin cells, and the dependency of stimulation of the release on NaF concentration was well correlated with those of NaF-enhanced inositol phosphate formation and increase in cytosolic free Ca2+. Although the effect of NaF on PGE2-induced catecholamine release in the presence of ouabain was additive at concentrations below 20 mM, there was no additive effect at 25 mM NaF. Furthermore, the time course of catecholamine release stimulated by 20 mM NaF in the presence of ouabain was quite similar to that by 1 microM PGE2, and both stimulations were markedly inhibited by amiloride, with half-maximal inhibition at 10 microM. Pretreatment of the cells with pertussis toxin did not prevent, but rather enhanced, PGE2-induced catecholamine release over the range of concentrations examined. These results demonstrate that NaF mimics the effect of PGE2 on catecholamine release from chromaffin cells and suggest that PGE2-evoked catecholamine release may be mediated by the stimulation of phosphoinositide metabolism through a putative GTP-binding protein insensitive to pertussis toxin.  相似文献   

2.
Arachidonic acid (AA) evoked a dose-dependent increase in the accumulation of inositol phosphates in cultured bovine adrenal chromaffin cells, and this effect was specific for AA. AA also induced a rise in [Ca2+]i, but this rise was markedly reduced by removal of extracellular Ca2+. AA-induced accumulation of inositol phosphates was absolutely dependent on extracellular Ca2+, and nicardipine and nifedine partially reduced it but verapamil had no effect. Moreover, AA dose-dependently stimulated catecholamine release from chromaffin cells in the presence of ouabain, and this effect was specific for AA. AA-induced catecholamine release in the presence of ouabain was also inhibited by nicardipine and nifedipine but not by verapamil. Furthermore, the phospholipase C inhibitor neomycin inhibited the release. These results taken together suggest that AA stimulates catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism in a Ca2(+)-dependent manner.  相似文献   

3.
We recently reported that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+,K+-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. The effect on catecholamine release was specific for prostaglandin E1 (PGE1) and PGE2 among prostaglandins tested (E1 = E2 greater than F2 alpha greater than D2). The release evoked by PGE2 plus ouabain was greatly reduced in Na+-depleted medium and not observed in Ca2+-free medium. Here we examined the synergistic effect of PGE2 and ouabain on the release with specific reference to ion fluxes. Regardless of the presence of PGE2, ouabain stimulated the release in a dose-dependent manner with half-maximal stimulation at 1 microM, and omission of K+ from the medium, a condition which suppresses the Na+,K+-ATPase activity, also enhanced the release from chromaffin cells exposed to PGE2. Ouabain induced a continuous accumulation of 22Na+ and 45Ca2+, as well as secretion of catecholamines. Although PGE2 itself showed hardly any effects on these cellular responses, PGE2 potentiated all of them induced by ouabain. The time course of catecholamine release was correlated with that of accumulation of 45Ca2+ rather than with that of 22Na+. The release evoked by PGE2 and ouabain was inhibited in a dose-dependent manner by amiloride and the analogue ethylisopropylamiloride, inhibitors of the Na+,H+-antiport, but not by the Na+-channel inhibitor tetrodotoxin nor by the nicotinic receptor antagonist hexamethonium. Ethylisopropylamiloride at 1 microM inhibited PGE2-enhanced accumulation of 22Na+ and 45Ca2+ and release of catecholamine by 40, 83, and 71%, respectively. Activation of the Na+,H+-antiport by elevation of the extracellular pH from 6.6 to 8.0 increased the release of catecholamines linearly. Furthermore, PGE2 induced a sustained increase in intracellular pH by about 0.1 pH unit above the resting value, which was abolished by amiloride or in Na+-free medium. These results taken together indicate that PGE2 activates the Na+,H+-antiport by stimulating phosphoinositide metabolism and that the increase in intracellular Na+ by both inhibition of Na+,K+-ATPase and activation of Na+,H+-antiport may lead to the redistribution of Ca2+, which is the initial trigger of catecholamine release.  相似文献   

4.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

5.
We recently reported that prostaglandin (PG) E2 stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain induced a gradual secretion of catecholamines from the cells (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). Here we examined the involvement of two signal pathways, Ca2+ mobilization and protein kinase C activation resulting from phosphoinositide metabolism, in the PGE2-induced catecholamine release. Either the Ca2+ ionophore ionomycin or 12-O-tetradecanoylphorbol 13-acetate (TPA) could enhance the release in the presence of ouabain, and ionomycin-induced release was additive to PGE2-induced release, but TPA-induced release was not additive. PGE2 dose-dependently stimulated the formation of diacylglycerol and caused the translocation of 4% of the total protein kinase C activity to become membrane-bound within 5 min. These effects were specific for PGE2 and PGE1 among PGs tested (PGE2 = PGE1 greater than PGF2 alpha greater than PGD2). Furthermore, the phosphoinositide-specific phospholipase C inhibitor neomycin inhibited PGE2-induced accumulation of inositol phosphates, diacylglycerol formation, translocation of protein kinase C, and also stimulation of catecholamine release. Both PGE2- and TPA-induced release were inhibited by the depletion of protein kinase C caused by prolonged exposure to TPA, but ionomycin-induced release was not inhibited. We recently found that the amiloride-sensitive Na+, H+-antiport participates in PGE2-evoked catecholamine release (Tanaka, T., Yokohama, H., Negishi, M., Hayashi, H., Ito, S., and Hayaishi, O. (1990) J. Neurochem. 54, 86-95). In agreement with our recent report, PGE2 and TPA induced a sustained increase in intracellular pH that was abolished by the protein kinase C inhibitor staurosporine but not by the calmodulin inhibitor W-7. Ionomycin also induced a marked increase in intracellular pH, but this increase was abolished by W-7 but not by staurosporine. These results demonstrate that PGE2-induced activation of the Na+, H(+)-antiport and catecholamine release in the presence of ouabain are mediated by activation of protein kinase C, rather than by Ca2+ mobilization, resulting from phosphoinositide metabolism.  相似文献   

6.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

7.
Chromaffin cells of bovine adrenal medulla release catecholamines in response to activation of nicotinic ACh receptors which open voltage-sensitive calcium channels. Catecholamine secretion by exocytosis requires an increase in cytosolic free calcium. The cells also possess muscarinic ACh receptors but muscarinic agents do not provoke catecholamine release. Quin-2 studies show that they do not increase cytosolic free Ca2+ concentration, but unlike the nicotinic agents, they cause phosphoinositide hydrolysis. Muscarinic stimulation leads to rapid loss of labelled phosphatidylinositol 4-phosphate and of phosphatidylinositol 4,5-bisphosphate. At the same time there is release of inositol trisphosphate, inositol bisphosphate and inositol phosphate. In a number of other cells inositol trisphosphate may act as a second messenger releasing Ca2+ from storage sites in the endoplasmic reticulum but this is not its function in bovine chromaffin cells.  相似文献   

8.
Prostaglandin E2 (PGE2) causes Ca2+ release from intracellular Ca2+ stores and stimulates phosphoinositide metabolism in bovine adrenal medullary cells. These results have been interpreted as PGE2 induces Ca2+ release from inositol trisphosphate (IP3)-sensitive stores. However, we have recently shown that pituitary adenylate cyclase-activating polypeptide (PACAP), bradykinin, and angiotensin II release Ca2+ from caffeine/ryanodine-sensitive stores, although they cause a concomitant increase of intracellular IP3. In light of these results, the mechanism of PGE2-induced Ca2+ release was investigated in the present study. PGE2 dose-dependently caused a transient but consistent Ca2+ release from internal Ca2+ stores. The PGE2-induced Ca2+ release was unaffected by cinnarizine, a blocker of IP3-induced Ca2+ release. By contrast, it was potently inhibited by prior application of caffeine and ryanodine. Although IP3 production in response to PGE2 was abolished by the phospholipase C inhibitor U-73122, Ca2+ release in response to PGE2 was unaffected by U-73122. The PGE2-induced Ca2+ release was unaffected by Rp-adenosine 3',5'-cyclic monophosphothioate, an inhibitor of protein kinase A, and forskolin, a cyclic AMP (cAMP)-elevating agent, did not cause Ca2+ release. The EP1 agonist 17-phenyl-trinorPGE2 and the EP1/EP3 agonist sulprostone mimicked the Ca(2+)-releasing effects of PGE2, whereas the EP2 agonist butaprost or the EP2/EP3 agonist misoprostol caused little or no Ca2+ release. The EP1 antagonist SC-51322 significantly suppressed the Ca2+ release response induced by PGE2, whereas the EP4 antagonist AH-23828B had little effect. These results suggest that PGE2, acting on EP1-like receptors, induces Ca2+ release from ryanodine/caffeine-sensitive stores through a mechanism independent of IP3 and cAMP and that PGE2 may share the same mechanism with PACAP and the other peptide ligands in causing Ca2+ release in bovine adrenal medullary cells.  相似文献   

9.
The role of cAMP in the control of secretion from bovine adrenal chromaffin cells was examined using the adenylate cyclase activator, forskolin. Treatment of chromaffin cells with forskolin resulted in a rise in cAMP levels. Forskolin inhibited catecholamine release elicited by carbamylcholine or nicotine but had no effect on secretion evoked by 55 mM K+. Inhibition of carbamylcholine-stimulated release by forskolin was half-maximal at 10 microM forskolin. The inhibition by forskolin of secretion evoked by carbamylcholine was at a step distal to the rise in intracellular free calcium concentration ([Ca2+]i), since this rise was not inhibited by forskolin, which itself produced a small rise in [Ca2+]i. The results suggest that secretion evoked by carbamylcholine is due to the activation of an additional second messenger pathway acting with the rise in [Ca2+]i. This additional pathway may be the target for cAMP action.  相似文献   

10.
We have demonstrated that prostaglandin E2 (PGE2) treatment of bovine adrenal chromaffin cells results in a sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in these cells. Because the continued elevation of [Ca2+]i was dependent on extracellular Ca2+ concentration, it can be assumed that the PGE2-induced [Ca2+]i increase is due, at least in part, to an opening of membrane Ca2+ channels. In this study, we used electrophysiological methods to examine the mechanism of the PGE2-induced [Ca2+]i increase directly. Puff application of PGE2 to the external medium resulted in a prolonged depolarization in about half of the chromaffin cells examined. In whole-cell voltage-clamp recordings, an increase in inward current was observed over a 6-7 min period following bath application of PGE2 (greater than or equal to 10 microM), even in the absence of external Na+. This inward current was abolished when the recordings were made with the cells in a Ca2(+)-free medium, but it was not inhibited by Mn2+, a blocker of voltage-dependent Ca2+ channels. In cell-attached patch-clamp configuration, PGE2 produced an increase in the opening frequency of inward currents. The reversal potential of the PGE2-induced currents was about +40 mV, which is close to the reversal potential of the Ca2+ channel. The opening frequency was not affected by membrane potential changes. In inside-out patch-clamp configuration, inositol 1,4,5-trisphosphate (2 microM) added to the cytoplasmic side activated the Ca2(+)-channel currents, but PGE2 was ineffective when applied to the cytoplasmic side. These results suggest that PGE2 activates voltage-independent Ca2+ channels in chromaffin cells through a diffusible second messenger, possibly inositol 1,4,5-trisphosphate.  相似文献   

11.
Prostaglandins (PGs) of the E series are recognized by specific receptors on T lymphocytes which lead to an increase in cAMP. The role of cAMP in modulation of T lymphocyte function is unknown. Here, we demonstrate that agents which increase cAMP in human T cells raise the intracellular free calcium concentration ([Ca2+]i). This increase in [Ca2+]i occurred following receptor stimulation with PGEs or by bypassing the receptor with the cell-permeant analog 8-(4-chlorophenylthio)-cAMP or forskolin, a direct activator of adenylyl cyclase. The calcium response to a submaximally stimulatory concentration of PGE2 was potentiated by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine. A time course of cAMP production in response to PGE2 stimulation closely resembled the calcium response and suggested that the two events were coincident. The PGE2 concentrations required to achieve 50% maximum effect of cAMP production and increases in [Ca2+]i were similar, 0.07 and 0.15 microM respectively. Chelation of extracellular Ca2+ did not abolish the PGE2-stimulated Ca2+ response, suggesting that an intracellular source of calcium was sensitive to cAMP. Significant inositol phosphate production was not detected in response to PGE2 over a wide concentration range. The PGE2-induced calcium response curves were of lesser magnitude with shorter times to peak than those of a known inositol 1,4,5 trisphosphate-producing agonist, anti-CD3, suggesting distinct Ca2+ release mechanisms. However, the cAMP-releasable store appeared to be contained within the inositol trisphosphate-releasable store since no response could be seen with cAMP-elevating agents following emptying of the inositol trisphosphate-sensitive pool of Ca2+.  相似文献   

12.
In primary cultures of bovine adrenal medulla, chromaffin cells responded to prostaglandin (PG) E2 by stimulating phosphoinositide metabolism (Yokohama et al. (1988) J. Biol. Chem. 263, 1119-1122). In contrast, nonchromaffin cells were found to respond to PGD2 by elevating their intracellular cAMP level. The formation of cAMP was detected at as low as 0.1 nM PGD2 and increased more than 100-fold over the basal level at 0.1 microM, and the response was specific for PGD2 (greater than PGE1 greater than PGE2 greater than PGF2 alpha = PGI2). The magnitude of cAMP formation and its specificity to PGD2 were retained throughout a 40-day culture period. Based on the inhibitory effect of cis-4-hydroxy-L-proline, an inhibitor of collagen synthesis, on cAMP formation, morphology, and immunoreactivity of cells to anti-collagen type I antiserum, the responsive cells were identified as fibroblasts. These results taken together demonstrate that the adrenal medulla is composed of chromaffin and nonchromaffin cells, which respond to PGE2 and PGD2, respectively, by two different signal transduction pathways. The cAMP formation by PGD2 was also observed in fibroblasts from bovine embryonic trachea among cell lines tested, suggesting that some populations of fibroblasts responsive to PGD2 exist in various tissues and may discriminate the signal from that of PGE1 or PGE2.  相似文献   

13.
In bovine adrenal chromaffin cells, prostaglandin E2 (PGE2) stimulates the formation of inositol phosphates and Ca2+ mobilization through its specific receptor [Yokohama, Tanaka, Ito, Negishi, Hayashi & Hayaishi (1988) J. Biol. Chem. 263, 1119-1122]. Here we show that PGE2-induced phosphoinositide metabolism was blocked by pretreatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). Using intact cells, we also examined the inhibitory effect of TPA on the individual steps of the activation process of phosphoinositide metabolism. The inhibition was observed within 1 min and complete by 10 min after addition of 1 microM-TPA, and half-maximal inhibition by TPA occurred at 20 nM. TPA prevented Ca2+ mobilization induced by PGE2, but not by the Ca2+ ionophore ionomycin. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not inhibit the formation of inositol phosphates and Ca2+ mobilization by PGE2. TPA treatment affected neither the high-affinity binding of [3H]PGE2 to intact cells and membrane fractions nor the ability of guanosine 5'-[gamma-thio]triphosphate to decrease the binding in membrane fractions. TPA also abolished phosphoinositide metabolism induced by muscarinic-receptor activation. NaF plus AlCl3 and ionomycin caused the accumulation of inositol phosphates, probably by directly activating a GTP-binding protein(s) and phospholipase C respectively; neither accumulation was inhibited by TPA treatment. These results suggest that protein kinase C serves as a feedback regulator for PGE2-induced phosphoinositide metabolism. The site of action of TPA appears to be distal to the coupling of the receptor to GTP-binding protein, but on a component(s) specific to the agonist-induced phosphoinositide metabolism.  相似文献   

14.
The effects of vanadate (Na3VO4) on pancreatic B-cell function were studied in normal mouse islets. Vanadate did not affect basal insulin release but potentiated the effect of 7-30 mM glucose at concentrations of 0.1-1 mM. This effect was progressive and slowly reversible. It was abolished by omission of extracellular Ca2+ but unaffected by blockers of adrenergic or muscarinic receptors. Comparison of the changes in membrane potential, 86Rb efflux and 45Ca efflux that vanadate and ouabain produced in B-cells made it possible to exclude the hypothesis that vanadate increases insulin release by blocking the sodium pump. Vanadate was also without effect on cAMP levels. On the other hand, it markedly changed the characteristics of the Ca(2+)-dependent electrical activity and of the oscillations of cytoplasmic Ca2+ recorded in B-cells stimulated by 15 mM glucose. In the steady state, Ca2+ influx was increased by vanadate, and this resulted in a rise in cytoplasmic Ca2+. The exact mechanisms underlying these changes could not be established but a blockade of K channels was excluded. In the presence of LiCl, vanadate markedly increased inositol phosphate levels in islet cells. This effect was attenuated but not suppressed by omission of Ca2+. A small increase in inositol bisphosphate was still produced by vanadate in the absence of LiCl. These results suggest that vanadate both stimulates phosphoinositide breakdown and inhibits inositol phosphate degradation. In conclusion, vanadate does not induce insulin release, but markedly potentiates the stimulation by glucose. This property is not due to an inhibition of the sodium pump or to a rise in cAMP concentration. It results from a complex interplay between changes in B-cell membrane potential, phosphoinositide metabolism and Ca2+ handling.  相似文献   

15.
Pretreatment of cultured bovine adrenal chromaffin cells with pertussis toxin facilitated nicotine-induced catecholamine release. This facilitation was correlated with the ability of the toxin to catalyze the ADP-ribosylation of an approximately 40-kDa membrane protein. The actions of the toxin were reversed by isonicotinamide, an inhibitor of ADP-ribosylation. Catecholamine release due to high K+ and muscarine was also enhanced by pertussis toxin. In all cases, 45Ca2+ uptake was unaltered in cells treated with the toxin. These results suggest that ADP-ribosylation of a 40-kDa membrane protein facilitates catecholamine release from bovine chromaffin cells without affecting 45Ca2+ uptake.  相似文献   

16.
The effects of leucine- and methionine-enkephalin, opiate peptides, on Ca2+ efflux from cultured bovine adrenal chromaffin cells were examined. These enkephalins stimulated the efflux of 45Ca2+ from cells in a concentration-dependent manner (10(-8) M-10(-6) M). Leucine-enkephalin did not increase the intracellular free Ca2+ level, 45Ca2+ uptake, catecholamine secretion, cAMP level or cGMP level. The peptide-stimulated 45Ca2+ efflux was not inhibited by incubation in Ca2+-free medium, but was inhibited by incubation in Na+-free medium. These results indicate that enkephalins stimulate extracellular Na+-dependent 45Ca2+ efflux from cultured bovine adrenal chromaffin cells, probably by stimulating membrane Na+/Ca2+ exchange.  相似文献   

17.
We characterized changes in membrane currents and the cytosolic Ca(2+) concentration, [Ca(2+)](i), in response to caffeine, and compared them with those in response to muscarine using the perforated patch-clamp technique and fura-2 microfluorimetry in guinea-pig adrenal chromaffin cells. Catecholamine release from single voltage-clamped cells was monitored with amperometry using carbon microelectrodes. Caffeine produced a transient outward current (I(out)) at holding potentials over - 60 mV, increasing in amplitude with increasing the potentials. It also evoked a rapid increase of [Ca(2+)](i) at all potentials examined. The current-voltage relation revealed that the activation of K(+) channels was responsible for the I(out) evoked by caffeine. Both current and [Ca(2+)](i) responses were reversibly abolished by cyclopiazonic acid, an inhibitor of Ca(2+)-pump ATPase. At - 30 mV, the caffeine-induced I(out), but not [Ca(2+)](i), was partly inhibited by either charybdotoxin or apamin. In the majority of cells tested, caffeine induced a larger I(out) but a smaller [Ca(2+)](i) increase than muscarine. Caffeine and muscarine increased catecholamine release from voltage-clamped single cells concomitant with the transient increase of [Ca(2+)](i), and there was a positive correlation between them. These results indicate that caffeine activates Ca(2+)-dependent K(+) channels and catecholamine secretion due to the release of Ca(2+) from internal stores in voltage-clamped adrenal chromaffin cells of the guinea-pig. There seems to be a spatial difference between [Ca(2+)](i) increased by Ca(2+) release from caffeine-sensitive stores and that released from muscarine (inositol 1,4,5-trisphosphate)-sensitive ones.  相似文献   

18.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

19.
Bovine adrenal chromaffin cells possess both nicotinic and muscarinic cholinergic receptors, but only nicotinic receptors have heretofore appeared to mediate Ca2+-dependent exocytosis. We have now found that muscarinic receptor stimulation in bovine adrenal chromaffin cells leads to enhanced inositol phospholipid metabolism as evidenced by the rapid (less than 1 min) formation of inositol trisphosphate (IP3) and inositol bisphosphate (IP2). Muscarinic receptor-mediated accumulation of IP3 and IP2 continues beyond 1 min in the presence of LiCl and is accompanied by large increases in inositol monophosphate. Muscarinic receptor stimulation was also found to enhance nicotine-induced catecholamine secretion by 1.7-fold if muscarine was added 30 s before nicotine addition. Moreover, since the muscarinic antagonist atropine reduces acetylcholine-induced secretion, we conclude that muscarinic receptor stimulation somehow primes these cells for nicotinic receptor-mediated secretion, perhaps by causing small nonstimulatory increases in cytosolic free Ca2+ mediated by IP3. Furthermore, we show that small depolarizations of these cells with 10 mM K+, which themselves do not affect basal secretion, also enhance nicotine-induced secretion. Thus, small increases in cytosolic free Ca2+ produced either by physiologic muscarinic receptor stimulation or by small experimental depolarizations with K+ may prime the chromaffin cells for nicotinic receptor-mediated secretion.  相似文献   

20.
The effect of angiotensin II on catecholamine release from bovine adrenal medulla has been investigated. In retrogradely perfused, isolated bovine adrenal glands, angiotensin II increased basal efflux of catecholamines, but the presence of angiotensin II did not increase the release of catecholamines evoked either by bolus injections of the secretagogue carbachol or by depolarization with a perfusing solution containing a raised concentration of K+. In chromaffin cells maintained in primary tissue culture, angiotensin II increased 3H release from cells preloaded with [3H]-noradrenaline but did not enhance the release evoked by carbachol or by depolarization with K+. The increase in 3H release evoked by angiotensin II from chromaffin cells in tissue culture was inhibited by its analogue antagonist Sar1,Ala8-angiotensin II (saralasin) and was entirely dependent on the presence of Ca2+ in the experimental medium. These findings suggest that, in the chromaffin cells of the bovine adrenal medulla, angiotensin II acts on specific receptors to cause a calcium-dependent catecholamine release but triggers no additional response that acts synergistically with depolarizing or nicotinic stimuli to augment catecholamine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号