首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fine structure of the epidermis and cuticle has been described for the oligochaete Aeolosoma bengalense. The epidermis is a pseudostratified epithelium and consists of the following cell types: ciliated and nonciliated supportive cells, pigment cells and associated satellite cells, mucous cells, basal cells, and ciliated non-supportive columnar cells. Overlying and restricted to the supportive cells is a delicate cuticle composed of: (a) a discontinuous layer of membrane-bounded surface particles; (b) a thin filamentous layer of moderate electron density just under the surface particles; (c) a thicker inner filamentous layer of low electron density. Digestion with pronase effectively removes the cuticle. This, together with the fact that it stains with alcian blue and ruthenium red, indicates that the cuticle contains an acid mucopolysaccharide. Regeneration of the cuticle, following pronase treatment, is marked by the elaboration of numerous microvilli by the supportive cells. Most of the microvilli are transitory and evidence supports a microvillar origin for the cuticular surface particles. The presence of cuticular surface particles may be a characteristic shared in common by all oligochaetes and, perhaps, some polychaetes.  相似文献   

2.
The “cuticle,” which revests the starfish tube foot, has been studied by electron microscopy and the findings correlated with histochemical observations. The “cuticle” is composed by two distinct zones; an outer zone including numerous microvilli, which extend from the inner zone into and through a fibrillar substance distinctly organized in two layers. These microvilli protrude slightly beyond the outer surface, where their tips give rise tonumerous extremely delicate fibrils. The second inner zone, of quite variable thickness and condensation of material, presents a coarser fibrous matrix where organelles and inclusions can be found. The whole cuticular complex does not derive from the majority of the epithelial cells, but is probably an extension of a special kind of T-shaped cells appearing at intervals, the “cuticle” forming a syncytial surface. Histochemical investigations indicate that the “cuticle” contains a combination of neutral and acid mucopolysaccharide, with a marked neutral predominance, the outer one displaying also an extremely thin coat of acid mucopolysaccharide with the sulfate group. The ordered arrangement of the microvilli suggests that this situation is imposed by the strong bond existing between the microvilli and the ouble mucopolysaccharide layers which would act as a cementing substance stabilizing the entire apical surface of the cell.  相似文献   

3.
Elongated Microvilli on Vegetal Pole Cells in Sea Urchin Embryos   总被引:1,自引:1,他引:0  
The ultrastructure of cells in the vegetal pole region of sea urchin embryos during early development to the mesenchyme blastula stage was examined by scanning electron microscopy. Vegetal pole cells in the ectoderm with longer microvilli than those of neighboring cells were first detectable at the early blastula stage just before hatching. These cells with elongated microvilli remained in the central region of the vegetal plate when most vegetal plate cells ingressed into the blastocoel to form primary mesenchyme. When first detectable in the sea urchin, Anthocidaris crassispina , four vegetal pole cells had elongated microvilli, but at the time of primary mesenchyme cell ingression, the number of cells with elongated microvilli had increased to eight, apparently by cell division. These vegetal pole cells were wedge-shaped with a broad surface adhering to the hyaline layer at the time of primary mesenchyme cell ingression. SEM observation of the outer surface of embryos showed that the microvilli extended into the hyaline layer. The reinforced attachment of vegetal pole cells to the hyaline layer through their elongated microvilli may explain why these cells could remain at the vegetal pole when the surrounding cells ingressed into the blastocoel as primary mesenchyme cells.  相似文献   

4.
Two components, a basal cuticle and an epicuticle, make up the cuticle ofA. mucosa. The basal cuticle consists of collagen fibrils, which are arranged in about 20 layers. The orientation of the fibrils changes rectangularly from one layer to the next. Fine filaments interweave the basal cuticle. The epicuticle, which is covered by a layer of electron dense material, is composed of irregularly arranged thin filaments. Branched microvilli of the epidermal cells penetrate the cuticle. Bacteria are found in the basal cuticle. Dorsally each segment has a band of densely packed smooth cilia. Laterally and partly ventrally aggregates of cilia are observed. These cilia exhibit apically artificial swellings. At least six different mucous cells are observed in the epidermis, morphologically distinguishable by the structure of the secretion products. Mucus is secreted via exocytosis through cuticular pores. During this process the mucus might expand. The secreted mucus consists of filamentous subunits.  相似文献   

5.
6.
7.
Partial characterization of carboxyl, sulfate, and phosphate groups on the Caenorhabditis elegans cuticle and intestinal microvilli was achieved by en face labeling of floating cryosections at two pH levels and specific blockage of sulfate groups by Alcian blue. All negatively charged groups on the cuticle and intestinal microvilli labeled heavily at pH 7.2–7.4. Pretreatment to block sulfate groups followed by ferritin labeling at pH 7.2–7.4 gave a 35% reduction of binding on the cuticle and an 80% reduction in binding on the microvilli. At pH 1.8 or 2.5, only the sulfate groups labeled as shown by the complete abolition of labeling on the cuticle and the microvilli following blockage of the sulfate groups. Molecules with accessible sulfate groups were distributed in clusters throughout the cortical layer of the cuticle, were present in the struts of the median layer but were absent from the basal layer. The advantages of applying molecular probes to cryosections as compared to sections prepared by standard electron microscopical techniques are discussed.  相似文献   

8.
The morphological features of the glandular epithelium that secretes pheromone in the polyphagous pest gypsy moth Lymantria dispar are described by light and electron microscopy. The monolayered gland cells are covered by the folded cuticle of the intersegmental membrane between the 8th and 9th abdominal segments showing neither sites of discontinuity nor distinct openings on its external surface. The cells bear a large, often irregularly shaped nucleus, and contain granules of variable amount and electron‐density. These granules are mostly located in the basal compartment of the cytoplasm, in a labyrinthine zone laying on a basement membrane. The apical membrane of the gland cells bear microvilli and cell–cell contact is established by different junctional structures. Nerve fibers enwrapped in glia are found beneath the basement membrane, in close contact with the secretory cells. This latter finding represents the first evidence of the innervation of the pheromonal gland in L. dispar. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
The ventral surface of the deep layer of gastrulating quail and chick embryos was examined using scanning electron microscopy. On the basis of cell protrusions, three or four different cell types were recognized. Cells covered with microplicae were found in the caudal region of the germ and as a narrow band extending along the lateral and anterior borders of the area pellucida. Cells covered with microvilli were found in a horseshoe-shaped zone in the anterior part of the germ. Beneath the rostral end of the primitive streak, the flattened deep-layer cells exhibited intercellular ridges and few microvilli. This area was surrounded by cells that usually had extended microvilli. The pattern of these cell types is discussed in relation to the formation of the different tissues that compose the deep layer in gastrulating embryos.  相似文献   

10.
Summary Tube feet of the sea urchin Strongylocentrotus franciscanus were studied with the scanning electron microscope (SEM). By use of fractured preparations it was possible to obtain views of all components of the layered tube-foot wall.The outer epithelium was found to bear tufts of cilia possibly belonging to sensory cells. The nerve plexus was clearly revealed as being composed of bundles of varicose axons. The basal lamina, which covers the outer and inner surfaces of the connective tissue layer, was found to be a mechanically resistant and elastic membrane. The connective tissue appears as dense bundles of (collagen) fibers. The luminal epithelium (coelothelium) is a single layer of flagellated collar cells.There is no indication that the muscle fibers, which insert on the inner basal lamina of the connective tissue layer are innervated by axons from the basiepithelial nerve plexus.The results agree with previous conclusions concerning tube-foot structure based on transmission electron microscopy, and provide additional information, particularly with regard to the outer and inner epithelia.This investigation was supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft. The work was carried out at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows for use of the facilities, and to Drs. Christopher Reed and Tom Schroeder for invaluable instruction and assistance  相似文献   

11.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

12.
The two-layered epithelium of the large milk ducts and the milk sinus of the bovine udder were studied by light and electron microscopy. Whereas the cells of the basal cell layer are poor in cell organelles, the cells of the apical layer shows many cell organelles and microvilli at the surface. This hints at processes of reabsorption through the apical cell layer. Together with the fast junctional complex between the cells, this confirmes the function of the epithelium as a barrier within the local defense system of the bovine udder.  相似文献   

13.
Ultrastructural observations on the gills of polychaetes   总被引:1,自引:0,他引:1  
The gills of several polychaete species belonging to 9 families were studied by scanning and transmission electron microscopy. The surface epithelium is covered by a thin cuticle which is invaded by microvilli penetrating the epicuticle in certain species. Some epithelial cells bear cilia, others are mucus-producing cells. The ciliary cells may be arranged in rows and maintain a constant flow of water over the gills. The distance between external water and blood stream differs considerably according to the species investigated. InMalacoceros the gills are characterized by closed afferent and efferent subepithelial vessels, which correspond to tubular invaginations of the coelomic wall. These vessels are lined by the basement lamina of the coelothelial cells, which are of the epitheliomuscular type. The vessels are open in the gills of other polychaetes and release the blood stream into a system of spaces immediately below the epidermis (e.g. in the branchial lamellae ofPectinaria andTerebellides). In several species the blood comes into very intimate contact with the cuticle (e.g. in the gill filaments ofDendronereides), but also in these animals both are separated by a very small epidermal layer.Supported by DFG Sto 75/3-6.  相似文献   

14.
Scanning electron microscopy reveals that the flat tongue of Platemys pallidipectoris has shallow grooves and no lingual papillae. The surface of the tongue is covered with dome-shaped bulges, each corresponding to a single cell. Short microvilli are distributed over the cell surface. Light microscopy shows a stratified cuboidal epithelium with an underlying strong connective tissue. Transmission electron microscopy indicates four layers. The basal cells of the epithelium are electron-translucent and have a large central nucleus and a cytoplasm with keratin tonofilaments. Plasma cells with abundant rough endoplasmic reticulum and mitochondria occur in the basal layer. Production of secretory granules begins in the more electron-dense intermediate layers and increases as the cells move toward the surface. The membranes of the cells of the deep intermediate layer form processes that project into relatively wide intercellular spaces. In the superficial intermediate layer, the cytoplasm of the cells contains numerous fine granules; these increase in number but not in size in more distal layers. The cells of the surface layer are electron-translucent with a round nucleus. Contents of their fine granules are secreted into the oral cavity. © 1995 Wiley-Liss, Inc.  相似文献   

15.
于杰  迟德富  李晓灿  宇佳 《昆虫学报》2012,55(4):386-394
为了探明20-羟基蜕皮甾酮对昆虫蜕皮过程中体壁的表皮层、 皮细胞及其细胞器的具体影响过程, 本研究利用透射电镜技术研究了20-羟基蜕皮甾酮对舞毒蛾Lymantria dispar (Linnaeus)5龄幼虫体壁超微结构的变化。结果表明, 用高浓度20-羟基蜕皮甾酮溶液浸过的白桦叶片饲喂幼虫, 处理6 h, 摄入约400 μg 20-羟基蜕皮甾酮后, 幼虫停止取食; 处理12 h时表皮细胞顶膜上的微绒毛减少, 在皮细胞与旧表皮之间形成蜕皮间隙, 旧头壳从幼虫头部脱离; 处理24 h时蜕皮间隙继续增大, 旧表皮与皮细胞进一步分离, 新表皮质层开始形成; 处理36 h时皮细胞顶膜形成较短的微绒毛, 胞质区域出现数量较多的电子疏松泡, 新表皮由上表皮、 外表皮及8层左右内表皮片层组成; 处理48 h时顶膜与内表皮界限模糊, 内表皮继续合成至16层左右; 72 h时细胞内出现大面积电子疏松泡, 内表皮合成至20层左右。 处理96 h时, 与对照组相比, 皮细胞细胞器较少, 核仁周围出现小部分空白区域, 胞质区域内含物减少; 虫体发黑缩小, 即将死亡; 内表皮层数仍旧保持20层左右。对照组幼虫6-96 h虫体活跃, 正常取食, 外部观察及透射电镜结果均未显现蜕皮现象; 表皮层由上表皮、 外表皮及内表皮组成; 皮细胞顶膜微绒毛密度高; 表皮细胞分泌活动旺盛, 胞质区域细胞界限明显, 内含物丰富; 细胞器典型而且活跃; 内表皮片层随时间不断增加至50层左右。结果提示, 外源20-羟基蜕皮甾酮能够导致舞毒蛾5龄幼虫的致死性蜕皮。  相似文献   

16.
Summary The development of the egg envelope and its incorporation into the larval cuticle of the polychaete Phragmatopoma lapidosa, was studied by correlative scanning and transmission electron microscopy. The mature egg possesses an envelope composed of five zones including an outer granular zone formed by the tips of the egg microvilli. The formation of the granules is described and their functions are discussed. The entire egg envelope is retained as the larval cuticle up to the 16 h trochophore stage. From this stage to about the 60 h larval stage, the envelope is gradually lost and replaced by a cuticle consisting of branching microvilli. The cuticle of the 20 day larva is composed of highly branching microvilli penetrating a homogeneous electron opaque cuticle. The possible functions of the cuticle among the Annelida are discussed.We thank Mrs. P.A. Linley, Mr. R. Koss, and Mr. G.D. Braybrook for technical assistance. Special appreciation is extended to Dr. Edward Ruppert for his contributions to many stimulating discussions during the course of this investigation. This study was partially supported by a National Research Council of Canada grant to F.S. ChiaContribution No. 76, Harbor Branch Foundation, Inc.  相似文献   

17.
The vomeronasal epithelium of adult garter snakes (Thamnophis sirtalis and T. radix) was studied by light and electron microscopy. The sensory epithelium is extraordinarily thick, consisting of a supporting cell layer, a bipolar cell layer, and an undifferentiated cell layer. The supporting cell layer is situated along the luminal surface and includes supporting cells and the peripheral processes (dendrites) of bipolar neurons. The luminal surfaces of both supporting cells and bipolar neurons are covered with microvilli. Specializations of membrane junctions are always observed between adjacent cells in the subluminal region. Below the supporting cell layer, the epithelium is characterized by a columnar organization. Each column contains a population of bipolar neurons and undifferentiated cells. These cells are isolated from the underlying vascular and pigmented connective tissue by the presence of a thin sheath of satellite cells and a basal lamina. Heterogeneity of cell morphology occurs within each cell column. Generative and undifferentiated cells occupy the basal regions and mature neurons occupy the apical regions. Transitional changes in cell morphology occur within the depth of each cell column. These observations suggest that the vomeronasal cell column is the structural unit of the organ and may represent the dynamic unit for cell replacement as well. A sequential process of cell proliferation, neuronal differentiation, and maturation appears to occur in the epithelium despite the adult state of the animal.  相似文献   

18.
黄胫小车蝗受精囊的亚显微结构   总被引:1,自引:1,他引:0  
利用组织学方法,观察了黄胫小车蝗Oedaleus infernalis 受精囊的显微与亚显微结构。结果表明,黄胫小车蝗受精囊为单个,由高度卷曲的受精囊管和蚕豆状的端囊构成。受精囊壁主要由表皮层、上皮层、基膜和肌肉层构成;上皮层包含上皮细胞、导管细胞和腺细胞。上皮细胞在靠表皮层的边缘有大量的微绒毛,两相邻上皮细胞的细胞膜相互嵌入,并有细微的突起延伸在导管细胞及腺细胞之间,直到基膜,达基膜处的上皮细胞膜折叠,与腺细胞膜的折叠,一起形成迷宫样的指状突起,附着在基膜上。导管细胞有一个较大的核和分泌导管,连接于腺细胞的细胞腔和受精囊腔,将腺细胞中分泌物运输到受精囊腔中。腺细胞具有典型的分泌细胞特征: 含发达内质网、高尔基复合体及不同大小的囊泡。肌肉层位于受精囊最外层,附在基膜上。在受精囊不同部位的结构有差异。在交配前和交配后,受精囊腺细胞的亚显微结构也有差异。  相似文献   

19.
Summary

The integument of the leech Hirudo medicinalis is mainly composed of a single layer of cuticle-secreting epidermal cells. The cuticle is made up of collagen fibers which support a layer of membrane-bound epicuticular projections.

Shedding of the old cuticle is preceded by the formation of a new cuticle. The epicuticular projections are the first to develop: they originate from the tips of numerous microvilli of the epidermal cells. As soon as it appears, the newly-formed collagen layer is firmly attached to the epidermal cells by numerous hemidesmo-somes, whereas the old cuticle is no longer connected with the epidermal surface. The epidermal cells exhibit marked characteristics of secretory activity during the laying down of the new cuticle.

The observations are discussed in connexion with recent findings of high ecdysteroid levels in leeches at the beginning of the molting cycle.  相似文献   

20.
Shatrov AB 《Tsitologiia》2000,42(3):219-227
The ultrastructural organization of hypodermis and the process of cuticle deposition is described for the pharate larvae of a trombiculid mite, Leptotrombidium orientale, being under the egg-shell and prelarval covering. The thin single-layered hypodermis consists of flattened epithelial cells containing oval or stretched nuclei and smooth basal plasma membrane. The apical membrane forms short scarce microvilli participating in the cuticle deposition. First of all, upper layers of the epicuticle, such as cuticulin lamella, wax and cement layers, are formed above the microvilli with plasma membrane plaques. Cuticulin layer is seen smooth at the early steps of this process. Very soon, however, epicuticle starts to be curved and forms particular high and tightly packed ridges, whereas the surface of hypodermal cells remains flat. Then a thick layer of the protein epicuticle is deposited due to secretory activity of hypodermal cells. Nearly simultaneously the thick lamellar procuticle starts to form through the deposition of their microfibrils at the tips of microvilli of the apical plasma membrane. Procuticle, as such, remains flat, is situated beneath the epicuticular ridges and contains curved pore canals. Cup-like pores in the epicuticle provide augmentation of the protein epicuticle mass due to secretion of particular substances by cells and to their transportation through the pore canals towards these epicuticular pores. The very beginning of the larval cuticle formation apparently indicates the starting point of the larval stage in ontogenesis, even though it remains for some time enveloped by the prelarval covering or sometimes by the egg-shell. When all the processes of formation are over, hungry larvae with a fully formed cuticle are actively hatched from two splitted halves of prelarval covering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号