首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
Feng K  Li SH  Guo XQ 《生理学报》1998,50(5):595-599
雄性SD大鼠,用乌拉坦(700mg/kg)和氯醛糖(30mg/kg)腹腔麻醉。实验结果:(1)每隔5min电刺激中脑导水管周围灰质背侧部“防御反应区”(dPAG),持续观察50min,可见恒定的升压反应。若电解毁单侧室旁核(PVN)区。1h后,电刺激中脑dPAG区诱发的升压反应幅度部分减小。而损毁穹隆部、下丘脑前部、下丘脑背内侧核、下丘脑腹内侧核则无上述效应。(2)电刺激或微量注射高半胱胺酸(DL  相似文献   

2.
猫扣带回前部内脏伤害感受神经元的诱发反应   总被引:1,自引:0,他引:1  
Wu MF  Teng GX 《生理学报》2000,52(6):511-514
应用玻璃微电极细胞内电位记录技术,观察了20史猫扣带回前部461个神经元对电刺激对侧内脏大神经的诱发反应及其电生理特性,在被观察的神经元中,176个为刺激相关神经元。根据诱发反应的特性,将其分为特异性内脏伤害感受神经元(114个,64.77%)、非特异性内脏伤害感受神经元(34个,19.32%)及非内脏伤害感受神经元(28个,15.91%)。诱发反应分为兴奋性(59.46%)、抑制性(22.30%  相似文献   

3.
电刺激大鼠中脑导水管周围灰质(PAG),在腰5(L_5)背根可记录到—稳定的负性背根电位(DRP),简称 PAG-DRP。PAG-DRP 具有空间和时间总和性质,沿背根作电紧张性扩布,且能被 GABA 能拮抗剂印防己毒素(Picrotoxin)所抑制。电解损毁中缝大核(NRM)对刺激背侧 PAG 诱发的 PAG-DRP 无明显影响,而可使刺激腹侧 PAG 诱发的 PAG-DRP电位幅值降低40%左右。结果表明,PAG 下行抑制作用中有突触前抑制参与;NRM 参与腹侧 PAG-DRP 的产生,背侧 PAG-DRP 则可能由 NRM 以外的其他核团中继。  相似文献   

4.
大鼠下丘脑弓状核区在唇针镇痛中的作用   总被引:2,自引:0,他引:2  
下丘脑弓状核区和脑内参与痛觉调制的结构有复杂的纤维联系,脑内β-脂肪激素-β-内啡肽-ACTH 神经元系统的胞体亦主要集中于下丘脑弓状核区。本实验用电解损毁、H 刀游离和电刺激大白鼠弓状核区的方法,研究该区在痛觉调制和唇针镇痛中的作用。(1)电解损毁或 H 刀游离弓状核区后基础痛阈未见明显改变,但唇针镇痛效应均明显降低。(2)单纯电刺激弓状核区能明显升高基础痛阈;唇针和电刺激弓状核区同时进行时的镇痛效应比单纯唇针时的镇痛效应有明显提高。根据这些结果,讨论了下丘脑弓状核区在大白鼠唇针镇痛中的作用。  相似文献   

5.
樊一平  张荣宝 《生理学报》1995,47(2):149-154
损毁伏核可明显削弱电刺激腓深神经(DPN)对兴奋下丘脑背内侧核诱发的升压反应和心肌缺血的抑制作用(P<0.05,P<0.01)。电刺激伏核可引起明显的降压效应。中脑中央灰质腹侧部(vPAG)微量注射纳洛酮可明显衰减伏核的减压效应;损毁vPAG甚至可翻转伏核的减压效应,引起轻度升压(P<0.01)。损毁弓状核后伏核的减压效应基本消失,弓状核内微量注射纳洛酮明显衰减伏的的减压效应。故DPN传入冲动可能  相似文献   

6.
应用电解损毁和脑室内注射药物的方法研究了刺激家兔腹部迷走神经外周端所致降压效应的中枢机制。结果表明:1.电刺激延脑闩部尾侧1.5—2mm、中线旁开0.25mm、深1—2mm 处主要引起降压反应。2.电解损毁该部位可以使刺激腹部迷走神经外周端所引起的降压效应显著减弱(n=20,P<0.001),但对刺激减压神经所致降压反应无影响。3.在延脑闩部水平电解损毁减压神经纤维在孤束核的主要投射区可以使刺激减压神经所致降压反应显著减弱,而对刺激腹部迷走神经外周端所致降压反应无影响。4.第四脑室注射5,6-双羟色胺的动物较之注射人工脑脊液的动物颈、胸髓5-羟色胺含量明显降低、动物动脉压增高、心率明显增快、刺激减压神经所致降压反应未见减弱,而刺激腹部迷走神经外周端所致降压反应却明显减小。因此,我们认为家兔腹部迷走神经外周端所致降压效应依赖于延脑闩下部的中缝隐核及连合核等结构,而与减压神经的投射部位无关。延脑中缝核至脊髓的下行性5-HT能神经纤维抑制脊髓交感节前神经元的活动,是这个降压效应的中枢机制之一。  相似文献   

7.
实验在56只水合氯醛麻醉的成年雄性大鼠上进行。实验结果表明:电刺激中缝背核(DR)能减慢蓝斑(LC)大多数神经元自发放电频率;而损毁DR则增加大多数LC神经元的自发放电频率。电刺激下丘脑弓状核(ARC)能抑制LC神经元对外周坐骨神经伤害性刺激的反应。刺激DR可增强此种抑制作用;相反,损毁DR能部分减弱此种抑制效应。结果提示,DR对LC神经元有紧张性抑制作用,并对刺激ARC抑制LC神经元伤害性反应起着调制作用。  相似文献   

8.
扣带回前部内脏伤害感受神经元的生物电活动   总被引:1,自引:0,他引:1  
为了从神经元水平探讨大脑皮层内脏伤害感受的特性及机制,应用玻璃微电极细胞内电位记录技术,研究18只猫扣带回前部312个神经元的自发生物电活动,及其对电刺激同侧内脏大神经的诱发反应.其中,82个为内脏伤害感受神经元,其自发生物电活动有5种主要形式.根据诱发反应的潜伏期等特性,内脏伤害感受神经元分为特异性内脏伤害感受神经元(76个,92.68%)和非特异性内脏伤害感受神经元(6个,7.32%).内脏伤害性诱发反应分为兴奋性(65.86%)、抑制性(17.07%)及混合性反应(17.07%)3种.结果提示内脏大神经的传入通路投射到同侧扣带回前部;扣带回前部神经元具有内脏伤害感受作用,存有特异性与非特异性内脏伤害感受神经元,为痛觉特异性学说提供了新的实验依据.  相似文献   

9.
红核在肌梭传入抑制伤害性反应中的作用   总被引:1,自引:0,他引:1  
Tang B  Fan XL  Wang CY  Li Q 《生理学报》1999,51(4):2-390
本实验用玻璃微电极细胞外记录方法, 观察了刺激红核对皮肤强电刺激诱发的大鼠脊髓背角广动力范围(wide dynamic range, WDR) 神经元长潜伏期反应(C反应) 的作用, 及红核对琥珀胆碱(succinylcholine,SCH) 诱发的肌梭传入抑制WDR神经元C反应效应的影响。结果表明: 电刺激红核对WDR 神经元C反应具有抑制作用, 此作用可被静注噻庚啶明显减弱。静脉注射SCH 对WDR神经元C反应有明显抑制作用, 损毁单侧红核后,SCH 对WDR神经元C反应的抑制效应明显减弱。结果提示,5HT参与红核的痛下行抑制作用, 在肌梭传入镇痛中红核起着一定的作用  相似文献   

10.
周予谦  郭建侃 《生理学报》1995,47(3):287-291
采用健康成年猫36只,电刺激左侧内脏大神经中枢端,可引起血浆皮质醇浓度升高,损毁隔核后,这升高效应消失,说明隔核可能参与诱发皮质醇升高效应过程,隔核内微量注射心得安,也可使升高效应消失,但注射酚妥拉明则无变化。上述结果提示,隔核参与肾上腺皮质分泌功能的调节,可能是通过去甲明上腺素(NE)能系统中的β受体来实现的。  相似文献   

11.
GPR103 is one of the orphan G protein-coupled receptors. Recently, an endogenous ligand for GPR103, 26RFa, was identified. Many 26RFa binding sites have been observed in various nuclei of the brain involved in the processing of pain such as the parafascicular thalamic nucleus, the locus coeruleus, the dorsal raphe nucleus, and the parabrachial nucleus. In the present study, the effects of intracerebroventricular injection of 26RFa were tested in the rat. Intracerebroventricular injection of 26RFa significantly decreased the number of both phase 1 and phase 2 agitation behaviors induced by paw formalin injection. This analgesic effect of 26RFa on the phase 1 response, but not phase 2 response, was antagonized by BIBP3226, a mixed antagonist of neuropeptide Y Y1 and neuropeptide FF receptors. Intracerebroventricular injection of 26RFa has no effect in the 52.5 °C hot plate test. Intracerebroventricular injection of 26RFa had no effect on the expression of Fos-like immunoreactivity induced by paw formalin injection in the superficial layers of the spinal dorsal horn. These data suggest that (1) 26RFa modulates nociceptive transmission at the supraspinal site during a formalin test, (2) the mechanism 26RFa uses to produce an analgesic effect on the phase 1 response is different from that on the phase 2 response, and (3) intracerebroventricularly injected 26RFa dose not directly inhibit the nociceptive input to the spinal cord.  相似文献   

12.
The effect of age on pain response to paw pressure and intraplantar formalin injection in rats is elucidated. Pain responses evoked by mechanical pressure on hind paw and intraplantar injection of formaldehyde (5%) into the hind paw were evaluated in groups of adult, young and aged male Sprague Dawley rats, after intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of L-arginine or NG-nitro-L-arginine methyl ester (L-NAME). Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining was done in the two groups. The results show that pain response was reduced in the aged rats and enhanced pain response to paw pressure in aged rats only. L-arginine (i.c.v.) had no effect on pain response to paw pressure in the two groups but enhanced biphasic pain response to formalin. L-NAME (i.p. and i.c.v.) suppressed pain response to paw pressure in the two groups. L-NAME (i.c.v.) suppressed pain response to formalin during the acute phase and enhanced it during the late phase. NADPH-diaphorase activity was significantly greater in young rats. In conclusion, pain response is blunted in the aged rats. NO might be involved in mechanical nociception in aged rats and in formalin-induced nociception in both groups. NO blockade has an antinociceptive effect on pain response. Central NO has dual role in pain response evoked by formalin.  相似文献   

13.
The sensory thalamus has been reported to play a key role in central pain sensory modulation and processing, but its response to repeated nociception at thalamic level is not well known. Current study investigated thalamic response to repeated nociception by recording and comparing the activity of the same thalamic neuron during the 1st and 2nd formalin injection induced nociception, with a week interval between injections, in awake and behaving mice. Behaviorally, the 2nd injection induced greater nociceptive responses than the 1st. Thalamic activity mirrored these behavioral changes with greater firing rate during the 2nd injection. Analysis of tonic and burst firing, characteristic firing pattern of thalamic neurons, revealed that tonic firing activity was potentiated while burst firing activity was not significantly changed by the 2nd injection relative to the 1st. Likewise, burst firing property changes, which has been consistently associated with different phases of nociception, were not induced by the 2nd injection. Overall, data suggest that repeated nociception potentiated responsiveness of thalamic neurons and confirmed that tonic firing transmits nociceptive signals.  相似文献   

14.
Zhu JX  Tang JS  Jia H 《生理学报》2004,56(6):697-702
本文旨在研究阿片受体是否参与丘脑中央下核(nucleus submedius,Sm)和顶盖前区前核(anterior pretectal nucleus,APtN)所介导的不同强度电针的镇痛作用。以辐射热诱发甩尾(tail flick,TF)反射潜伏期为伤害性反应的指标,观察了Sm和APtN微量注射阿片受体拮抗剂纳洛酮对不同强度电针“足三里”穴(St.36)抑制大鼠TF反射的效应。结果表明,Sm给予纳洛酮(1.0μg,0.5μl)阻断强电针(5mA)对TF反射的抑制效应,而对弱电针(0.5mA)的效应无明显影响;相反,APtN给予纳洛酮阻断弱电针对TF反射的抑制效应,而对强电针的效应无明显影响;纳洛酮供给到Sm或APtN邻近其它脑区对强、弱电针的效应均无影响。这些结果提示,Sm内的阿片受体参与介导强电针兴奋细传入纤维(A-δ和C类)产生的镇痛,而APtN内的阿片受体则介导弱电针兴奋粗传入纤维(A-β类)产生的镇痛。  相似文献   

15.
Gonadal hormones have been shown to exert modulatory effects on nociception and analgesia. To investigate the role of gonadal hormones in the response by female rats to both phasic and persistent nociceptive stimulation, we evaluated the effects of long-term ovariectomy (OVX, 6 months) on the thermal pain threshold and on formalin-induced responses. The thermal pain threshold was evaluated with the plantar test apparatus, while persistent pain was induced by a subcutaneous injection of dilute formalin (50 microliter, 10%) in the dorsal hind paw. The formalin test was carried out in an open field apparatus where the animal's spontaneous behavior and formalin-induced responses (licking duration, flinching frequency and flexing duration of the injected paw) were recorded for 60 min. Estradiol and corticosterone plasma levels were determined in blood collected from the anesthetized animals at the end of the test. In OVX females, the duration of formalin-induced licking was longer than in Intact females during both the first and the second phase; flinching and flexing did not differ from Intact. The thermal pain threshold was only slightly affected by OVX. Estradiol and corticosterone were lower in OVX females than Intact ones. These data indicate that long-term depletion of gonadal hormones in female rats modulates the pain-induced behavioral responses related to supraspinal neural circuits (licking of the injected paw) rather than more spinally mediated responses such as formalin-induced flinching and withdrawal latency in the plantar test.  相似文献   

16.
The formalin test has been proposed as an animal model of pain produced by tissue injury. Although biphasic nociceptive responses to formalin injection have been well documented, low concentrations (0.125 and 0.5%) of formalin injected into the mouse hindpaw produced only the phasic (acute) paw-licking response, lasting the first 5 min after the formalin injection. To explore the involvement of nitric oxide (NO) in the spinal cord and peripheral system during the acute phase of the formalin test, we examined the effect of intrathecal (i.t.) or intraplantar (i.pl.) injection of L-N(G)-nitro arginine methyl ester (L-NAME), a NO synthase inhibitor in mice. Pretreatment with L-NAME (160 nmol), injected i.t., resulted in a significant inhibition of the paw-licking response induced by 0.125 and 0.5% of formalin. L-Arginine (600 mg/kg, i.p.) but not D-arginine (600 mg/kg, i.p.) reversed the antinociceptive effect of L-NAME on the acute nociceptive response induced by low concentrations of formalin. The i.pl. injection of L-NAME (160 nmol) produced a significant decrease of the late (tonic) phase response evoked by 2.0% formalin without affecting the early (acute) phase response. Similar results have been reported in the case of i.t. injected L-NAME as assayed by the 2.0% formalin test. L-NAME (160 nmol), injected into the plantar paw, gave no significant effect on the acute nociceptive response induced by a low concentration of formalin (0.125%). These results suggest that NO in the spinal cord may be involved in not only the late phase response of the formalin (2.0%)-induced paw-licking, but also at least the acute phase response induced by low concentrations (0.125 and 0.5%) of formalin, while peripheral NO has little effect on the early (acute) phase nociceptive response evoked by formalin (0.125--2.0%) injection.  相似文献   

17.
Data concerning the effect of static magnetic field (SMF) on nociceptive processes are contradictory in the literature probably due to differences in species, characteristics of the magnetic fields, and duration of the exposure. The aim of the present series of experiments was to elucidate the action of acute full-body exposure of mice to a special SMF developed and validated by us on acute visceral and somatic chemonociception and inflammatory mechanical hyperalgesia. SMF exposure significantly diminished the number of acetic acid- or MgSO4-induced abdominal contractions (acute visceral nociception), formalin-evoked paw lickings and liftings in both phase I (acute somatic nociception) and phase II (acute inflammatory nociception) and mechanical hyperalgesia evoked by i.pl. injection of carrageenan as well as the TRPV1 capsaicin receptor agonist resiniferatoxin. Selective inactivation of capsaicin-sensitive sensory fibres by high dose resiniferatoxin pretreatment decreased nocifensive behaviours in phase II of the formalin test to a similar extent suggesting that pro-inflammatory neuropeptides such as substance P and calcitonin gene-related peptide released from these fibres are involved in this inflammatory reaction. Significant inhibitory effects of SMF on formalin-induced nociception and carrageenan-evoked hyperalgesia were absent in resiniferatoxin-pretreated mice, which also points out that capsaicin-sensitive nerves are involved in the SMF-induced anti-nociceptive action.  相似文献   

18.
Seasonal and diurnal variations in tonic pain reactions were examined in female and male CBA/J mice maintained in a 12/12 dark/light cycle, at controlled temperature and humidity conditions. Animals were injected into the dorsum of one hindpaw with a dilute (20 microl, 1%) formalin solution. Pain-related behaviors were quantified as the time spent licking the injected paw and the number of flinching episodes. The experiments were performed during the first part of the light phase (Light: from 7 to 10 a.m.) or during the first part of the dark phase of the diurnal cycle (Dark: from 7 to 10 p.m.), in two different periods of the year: Spring (March-June) and Winter (November-January). Considering all data, females showed a slightly enhanced licking response, as well as an increase in the time spent in self-grooming, in comparison with males. In Spring, the licking and flinching responses were higher during the Dark phase than during the Light phase. This held for both sexes and for both phases of the behavioral response to formalin injection. By contrast, no significant diurnal variation in pain reactions was found in Winter. These seasonal and diurnal differences were not due to nonspecific changes in motor behavior, inasmuch as locomotor activity and self-grooming showed a different pattern: during the second phase after formalin, self-grooming was higher in the Light period in the experiments performed in Spring, whereas locomotor activity showed no significant seasonal changes. These results show that the behavioral reactions to prolonged noxious input, integrated both at spinal and supraspinal sites, undergo similar seasonal and diurnal variations in both sexes, strengthening the importance of chronobiological factors in the modulation of nociception.  相似文献   

19.
17α-Ethinylestradiol (EE), the main component of the contraceptive pill, is a synthetic estrogen found in rivers of the United States and Europe as an environmental contaminant. It is one of the most studied xenoestrogens due to its possible effect on the reproductive system. In the present study we evaluated the modulation of pain responses induced by formalin injection (licking, flexing, paw-jerk) in 8-month-old male and female offspring of female rats treated with two different doses of EE (4 ng/kg/day or 400 ng/kg/day) during pregnancy and lactation. Spontaneous behaviors and gonadal hormone levels were also determined. Both concentrations of EE induced an increase of pain behaviors in males only, i.e. higher flexing and licking of the formalin-injected paw than in OIL-exposed rats, during the second, inflammatory, phase of the formalin test. Grooming duration was increased by EE exposure in both males and females. Prenatal EE exposure (both concentrations) decreased estradiol plasma levels in the formalin-injected females but not in the males. These results underline the possibility that exposure to an environmental contaminant during the critical period of development can affect neural processes (such as those involved in pain modulation) during adulthood, indicating long-term changes in brain circuitry. However, such changes may be different in males and females.  相似文献   

20.
Intraplantar injection of 0.4% formalin into the rat hind paw leads to a biphasic nociceptive response; an ‘acute’ phase (0–15 min) and ‘tonic’ phase (16–120 min), which is accompanied by significant phosphorylation of extracellular signal‐regulated kinase (ERK)1/2 in the contralateral striatum at 120 min post‐formalin injection. To uncover a possible relationship between the slow‐onset substance P (SP) release and increased ERK1/2 phosphorylation in the striatum, continuous infusion of SP into the striatum by reverse microdialysis (0.4 μg/mL in microdialysis fiber, 1 μL/min) was performed to mimic volume neurotransmission of SP. Continuous infusion for 3 h of SP reduced the duration of ‘tonic’ phase nociception, and this SP effect was mediated by neurokinin 1 (NK1) receptors since pre‐treatment with NK1 receptor antagonist CP96345 (10 μM) blocked the effect of SP infusion. However, formalin‐induced ‘tonic’ phase nociception was significantly prolonged following acute injection of the MAP/ERK kinase 1/2 inhibitor PD0325901 (100 pmol) by microinjection. The coinfusion of SP and PD0325901 significantly increased the ‘tonic’ phase of nociception. These data demonstrate that volume transmission of striatal SP triggered by peripheral nociceptive stimulation does not lead to pain facilitation but a significant decrease of tonic nociception by the activation of the SP‐NK1 receptor–ERK1/2 system.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号