首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a study of the adsorption of a positively charged protein to a positively charged spherical polyelectrolyte brush (SPB) by isothermal titration calorimetry (ITC). ITC is used to determine the adsorption isotherm as a function of temperature and of salt concentration (at physiological pH 7.2). At low ionic strength, RNase A is strongly adsorbed by the SPB particles despite the fact that both the SPB particles and the protein are positively charged. Virtually no adsorption takes place when the ionic strength is raised through added salt. This is strong evidence for counterion release as the primary driving force for protein adsorption. We calculated that ~2 counterions were released upon RNase A binding. The adsorption of RNase A into like-charged SPB particles is entropy-driven, and protein protonation was not significant. Temperature-dependent measurements showed a disagreement between the enthalpy derived via the van't Hoff equation and the calorimetric enthalpy. Further analysis shows that van't Hoff analysis leads to the correct enthalpy of adsorption. The additional contributions to the measured enthalpy are potentially sourced from unlinked equilibria such as conformational changes that do not contribute to the binding equilibrium.  相似文献   

2.
Isothermal calorimetric titration of 18-crown-6 ether with BaCl2 in pure aqueous solution over the temperature range 7-40 degrees C gives precise binding constants and enthalpy changes. Nonlinear least-squares fitting of the binding constants to the integrated van't Hoff equation, including a temperature-independent change in heat capacity, leads to van't Hoff enthalpies that differ significantly from the observed calorimetric enthalpies. This perplexing discrepancy appears at present to be very widely occurring.  相似文献   

3.
Tubulins were purified from the brain tissues of three Antarctic fishes, Notothenia gibberifrons, Notothenia coriiceps neglecta, and Chaenocephalus aceratus, by ion-exchange chromatography and one cycle of temperature-dependent microtubule assembly and disassembly in vitro, and the functional properties of the protein were examined. The preparations contained the alpha- and beta-tubulins and were free of microtubule-associated proteins. At temperatures between 0 and 24 degrees C, the purified tubulins polymerized readily and reversibly to yield both microtubules and microtubule polymorphs (e.g., "hooked" microtubules and protofilament sheets). Critical concentrations for polymerization of the tubulins ranged from 0.87 mg/mL at 0 degrees C to 0.02 mg/mL at 18 degrees C. The van't Hoff plot of the apparent equilibrium constant for microtubule elongation at temperatures between 0 and 18 degrees C was linear and gave a standard enthalpy change (delta H degree) of +26.9 kcal/mol and a standard entropy change (delta S degree) of +123 eu. At 10 degrees C, tubulin from N. gibberifrons polymerized efficiently at high ionic strength; the critical concentration increased monotonically from 0.041 to 0.34 mg/mL as the concentration of NaCl added to the assembly buffer was increased from 0 to 0.4 M. Together, the results indicate that the polymerization of tubulins from the Antarctic fishes is entropically driven and suggest that an increased reliance on hydrophobic interactions underlies the energetics of microtubule formation at low temperatures. Thus, evolutionary modification to increase the proportion of hydrophobic interactions (relative to other bond types) at sites of interdimer contact may be one adaptive mechanism that enables the tubulins of cold-living poikilotherms to polymerize efficiently at low temperatures.  相似文献   

4.
Wang X  Pielak GJ 《Biochemistry》1999,38(51):16876-16881
We used isothermal titration calorimetry to study the equilibrium thermodynamics for formation of the physiologically-relevant redox protein complex between yeast ferricytochrome c and yeast ferricytochrome c peroxidase. A 1:1 binding stoichiometry was observed, and the binding free energies agree with results from other techniques. The binding is either enthalpy- or entropy-driven depending on the conditions, and the heat capacity change upon binding is negative. Increasing the ionic strength destabilizes the complex, and both the binding enthalpy and entropy increase. Increasing the temperature stabilizes the complex, indicating a positive van't Hoff binding enthalpy, yet the calorimetric binding enthalpy is negative (-1.4 to -6.2 kcal mol(-)(1)). We suggest that this discrepancy is caused by solvent reorganization in an intermediate state. The measured enthalpy and heat capacity changes are in reasonable agreement with the values estimated from the surface area change upon complex formation. These results are compared to those for formation of the horse ferricytochrome c/yeast ferricytochrome c peroxidase complex. The results suggest that the crystal and solution structures for the yeast complex are the same, while the crystal and solution structures for horse cytochrome c/yeast cytochrome c peroxidase are different.  相似文献   

5.
The HPLC separation of the R,S and S,R enantiomers of pyrrolidinyl norephedrine on immobilized alpha-1 glycoprotein (AGP) was investigated. Conditions for the separation were varied using a premixed mobile phase containing an ammonium phosphate buffer and an organic modifier. The influence of mobile phase pH, ionic strength, organic modifier composition, modifier type, and temperature on the chiral selectivity and retention were investigated. The presented data demonstrate that independent phenomena govern the enantioselectivity and retention. Retention is a function of both ion exchange equilibria and hydrophobic adsorption. Thermodynamic data derived from van't Hoff plots illustrates that while enantioselectivity is also enthalpically driven, the magnitude of the enthalpy term is governed by pH. Enantioselectivity has little dependence on ionic strength. Hydrophobic interactions appear to foster hydrogen bonding interactions; the two appear to be mutually responsible for chiral selectivity. The chiral selectivity decreases as the pH is decreased and increases with mobile phase buffer strength.  相似文献   

6.
Analysis of the results of calorimetric study of reconstituted collagen (type I) fibrils, in particular, the half-width of the temperature transition, shows that the collagen packing density in the fibrils and the size of cooperative blocks therein depend on the assembly temperature and on the initial collagen concentration. The least dense fibrils are formed at subphysiological temperatures (25° or 30°C) and low concentration (0.3 mg/ml). The extent of ordering does not change upon doubling the concentration but increases upon quadrupling it. At physiological temperature (35°C) the fibrils are densely packed regardless of collagen concentration. The enthalpy of fibril assembly is minimal at 35°C, 1.2 mg/ml, and ionic strength of 0.17 M. The influence of temperature on particular steps of fibrillogenesis and the role of water in these processes are discussed.  相似文献   

7.
Bakk A 《Physical biology》2004,1(3-4):152-158
Many small globular proteins are traditionally classified as thermodynamical two-state systems, i.e., the protein is either in the native, active state (folded) or in the denatured state (unfolded). We challenge this view and show that there may exist (protein) systems for which a van't Hoff analysis of experimental data cannot determine whether the system corresponds to two or three thermodynamical states when only temperatures in a narrow temperature region around the transition are considered. We generalize a widely employed two-state protein folding model to include a third, transition state. For this three-state system we systematically study the deviation of the calorimetric enthalpy (heat of transition) from the van't Hoff enthalpy, a measure of the two-stateness of a transition. We show that under certain conditions the heat capacity of the three-state system can be almost indistinguishable from the heat capacity for the two-state system over a broad temperature interval. The consequence may be that some three-state (or even more than three-states) systems have been misinterpreted as two-state systems when the conclusion is drawn solely upon the van't Hoff enthalpy. These findings are important not only for proteins, but also for the interpretation of thermodynamical systems in general.  相似文献   

8.
Glycerol inhibits the in vitro self-association of monomeric collagen into fibrils and induces the dissociation of fibrils preassembled from NaBH4-reduced collagen. These effects were investigated in an effort to understand the mechanism of fibril assembly of the protein. In PS buffer (0.03 M NaPi and 0.1 M NaCl, pH 7.0) containing 0.1-1.0 M glycerol, the self-association of type I collagen from calf skin took place only if the protein concentration was above a critical value. This critical protein concentration increased with increasing glycerol concentration. Velocity sedimentation studies showed that below the critical protein concentration and under fibril assembly conditions, the collagen was predominantly in a monomeric state. Electron microscopic examinations revealed that the collagen aggregates formed above the critical concentration consisted mostly of microfibrils of 3-5-nm diameter along with some banded fibrils were found. Collagen treated with pepsin to remove its nonhelical telopeptides also self-associated into microfibrils and fibrils in the presence of glycerol, but the reaction did not exhibit any critical concentration. These results are consistent with a mechanism of in vitro collagen fibril assembly which involves the initial formation of microfibrils through a helical cooperative mechanism. They also suggest that contacts of the nonhelical telopeptides of each collagen with its neighboring molecules provide the necessary negative free energy change for the cooperativity and that subsequent lateral association of the microfibrils leads to banded fibrils.  相似文献   

9.
The self-assembly of calf brain tubulin, purified by the modified Weisenberg procedure, was examined in an adiabatic differential heat capacity microcalorimeter. Tubulin solutions at concentrations between 6 and 17 mg/mL were heated from 8 to 40 degrees C at heating rates between 0.1 and 1.0 deg/min in a pH 7.0 phosphate buffer containing 1 X 10(-3) M GTP, 1.6 X 10(-2) M MgCl2, and 3.4 M glycerol. The heat capacity change, deltaCp of the microtubule growth reaction was found to be -1600 +/- 500 cal/(deg mol) per 110 000 molecular weight tubulin dimer incorporated into microtubules, in agreement with the reported van't Hoff deltaCp value of -1500 cal/(deg mol) [Lee, J.C., & Timasheff, S.N. (1977) Biochemistry 16, 1754-1765]. The assembly reaction is characterized by a complex heat uptake pattern comprising both endothermic and exothermic processes.  相似文献   

10.
The interaction of dodecyl trimethylammonium bromide (DTAB), a cationic surfactant, with calf thymus DNA has been studied by various methods, including potentiometric technique using DTAB-selective plastic membrane electrode at 27 and 37 degreesC, isothermal titration microcalorimetry and UV spectrophotometry at 27 degreesC using 0.05 M Tris buffer and 0.01 M NaCl at pH 7.4. The free energy is calculated from binding isotherms on the basis of Wyman binding potential theory and the enthalpy of binding according to van't Hoff relation. The enthalpy of unfolding has been determined by subtraction of the enthalpy of binding from the microcalorimetric enthalpy. The results show that, after the interaction of first DTAB molecule to DNA (base molarity) through the electrostatic interaction, the second DTAB molecule also binds to DNA through electrostatic interaction. At this stage, the predom-inant DNA conformational change occurs. Afterwards up to 20 DTAB molecules, below the critical micelle concentration of DTAB, bind through hydrophobic interactions.  相似文献   

11.
The results of a calorimetric study of type I collagen fibrillogenesis were analyzed. The dependence of the half-width of the temperature transition of a collagen solution on the concentration and temperature of collagen formation was studied. It was demonstrated that, by varying temperature and collagen concentration, one can regulate the density of packing and dimensions of cooperative fibril blocks. At temperatures below the physiological level (25 degrees C and 30 degrees C), and a relatively low concentration of collagen (0.3 mg/ml), fibrils with the lowest density of packing are formed. The degree of order does not change as the collagen concentration increases twofold but grows as the concentration increases fourfold. It was shown that, at the physiological temperature (35 degrees C), fibrils with a dense packing of molecules are formed at all collagen concentrations studied. The value of fibril formation enthalpy is minimal at a temperature of 35 degrees C, pH 7.2, an ionic strength of 0.17 M and a concentration of 1.2 mg/ml. Based on the results obtained, a conclusion was made that the packing density of fibrils formed at physiological temperature does not depend on collagen concentration over the concentration range of 0.3 - 1.2 mg/ml.  相似文献   

12.
We investigate the effect of ionic strength on the kinetics of heat-induced fibrilar aggregation of bovine beta-lactoglobulin at pH 2.0. Using in situ light scattering we find an apparent critical protein concentration below which there is no significant fibril formation for all ionic strengths studied. This is an independent confirmation of our previous observation of an apparent critical concentration for 13 mM ionic strength by proton NMR spectroscopy. It is also the first report of such a critical concentration for the higher ionic strengths. The critical concentration decreases with increasing ionic strength. Below the critical concentration mainly "dead-end" species that cannot aggregate anymore are formed. We prove that for the lowest ionic strength this species consists of irreversibly denatured protein. Atomic force microscopy studies of the morphology of the fibrils formed at different ionic strengths show shorter and curvier fibrils at higher ionic strength. The fibril length distribution changes non-monotonically with increasing ionic strength. At all ionic strengths studied, the fibrils had similar thicknesses of about 3.5 nm and a periodic structure with a period of about 25 nm.  相似文献   

13.
G Ramsay  E Freire 《Biochemistry》1990,29(37):8677-8683
The temperature and guanidine hydrochloride (GuHCl) dependence of the structural stability of diphtheria toxin has been investigated by high-sensitivity differential scanning calorimetry. In 50 mM phosphate buffer at pH 8.0 and in the absence of GuHCl, the thermal unfolding of diphtheria toxin is characterized by a transition temperature (Tm) of 54.9 degrees C, a calorimetric enthalpy change (delta H) of 295 kcal/mol, and a van't Hoff to calorimetric enthalpy ratio of 0.57. Increasing the GuHCl concentration lowers the transition temperature and the calorimetric enthalpy change. At the same time, the van't Hoff to calorimetric enthalpy ratio increases until it reaches a value of 1 at 0.3 M GuHCl and remains constant thereafter. At low GuHCl concentrations (0-0.3 M), the thermal unfolding of diphtheria toxin is characterized by the presence of two transitions corresponding to the A and B domains of the protein. At higher GuHCl concentrations (0.3-1 M), the A domain is unfolded at all temperatures, and only one transition corresponding to the B domain is observed. Under these conditions, the most stable protein conformation at low temperatures is a partially folded state in which the A domain is unfolded and the B domain folded. A general model that explicitly considers the energetics of domain interactions has been developed in order to account for the stability and cooperative behavior of diphtheria toxin. It is shown that this cooperative domain interaction model correctly accounts for the temperature location as well as the shape and area of the calorimetric curves. Under physiological conditions, domain-domain interactions account for most of the structural stability of the A domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
J B Chaires 《Biopolymers》1985,24(2):403-419
Fluorescence and absorbance methods were used to study the interaction of daunomycin with calf-thymus DNA over a wide range of temperatures and NaCl concentrations. van't Hoff analysis provided estimates for the enthalpy of the binding reaction over the NaCl range of 0.05–1.0 M. Daunomycin binding is exothermic over this entire range, and the favorable binding free energy arises primarily from the large, negative enthalpy. Both the enthalpy change and entropy change are strong functions of ionic strength. Possible molecular contributions to the enthalpy and entropy are discussed, leading to the tentative conclusion that hydrogen-bonding interactions at the interacalation site are the primary contributors to the observed thermodynamic parameters. The dependence of the enthalpy on the ionic strength is well beyond the predictions of current polyelectrolyte theory and cannot be fully accounted for. The enthalpy and entropy changes observed compensate one another to produce relatively small free-energy changes over the range of solution conditions studied.  相似文献   

15.
The folding of collagen in vitro is very slow and presents difficulties in reaching equilibrium, a feature that may have implications for in vivo collagen function. Peptides serve as good model systems for examining equilibrium thermal transitions in the collagen triple helix. Investigations were carried out to ascertain whether a range of synthetic triple-helical peptides of varying sequences can reach equilibrium, and whether the triple helix to unfolded monomer transition approximates a two-state model. The thermal transitions for all peptides studied are fully reversible given sufficient time. Isothermal experiments were carried out to obtain relaxation times at different temperatures. The slowest relaxation times, on the order of 10-15 h, were observed at the beginning of transitions, and were shown to result from self-association limited by the low concentration of free monomers, rather than cis-trans isomerization. Although the fit of the CD equilibrium transition curves and the concentration dependence of T(m) values support a two-state model, the more rigorous comparison of the calorimetric enthalpy to the van't Hoff enthalpy indicates the two-state approximation is not ideal. Previous reports of melting curves of triple-helical host-guest peptides are shown to be a two-state kinetic transition, rather than an equilibrium transition.  相似文献   

16.
The stoichiometry of CO ligation to the dimer heme protein Rhodospirillum molischianum cytochrome c' is determined. We have recently measured the enthalpy change of CO ligation to this molecule by the van't Hoff method and found the value of -10.7 +/- 1.2 kcal/mol CO (aqueous) (Doyle, M. L., Weber, P. C., and Gill, S. J. (1985) Biochemistry 24, 1987-1991). In the present paper the enthalpy change of CO ligation, measured directly by titration calorimetry, is found to be -9.5 +/- 0.2 kcal/mol heme. Since the van't Hoff method gives the heat value in units/mole of CO and the calorimetric method gives the heat value in units/mole of heme, the stoichiometry of the reaction is given by the ratio of the two values and found to be 0.9 +/- 0.1, or within experimental error, one CO molecule bound per heme.  相似文献   

17.
G C Na 《Biochemistry》1989,28(18):7161-7167
Type I collagen purified from calf skin was further separated into monomeric and oligomeric fractions and characterized with gel electrophoresis and measurement of solution viscosity. The thermal stabilities of the triple-helical structure of the collagen molecules of these preparations and the fibrils assembled therefrom were determined with differential UV spectroscopy and scanning microcalorimetry. The monomeric collagen was reduced with NaBH4-, and the kinetics and equilibrium of the reversible fibril assembly-disassembly were examined in detail. Fibril assembly and disassembly of the collagen induced by slow scans of temperature showed hysteresis. The assembly curve was very sharp whereas the disassembly curve was gradual. Equilibrium centrifugation showed the collagen disassembled from the fibrils to be predominantly monomers. However, unlike the unassembled collagen, the collagen disassembled from fibrils by cooling showed no lag phase in subsequent cycles of fibril assembly. The thermodynamic parameters of fibril growth were derived from a fibril disassembly curve. Fibril growth was weaker for the NaBH4-reduced monomeric collagen than the native crude collagen, perhaps due to the removal of oligomers and the changes in the molecular structure brought by the reduction. The results corroborated the strongly cooperative mechanism for the fibril assembly proposed in the preceding paper.  相似文献   

18.
Human unhydroxylated homotrimeric triple-helical collagen I produced in transgenic plants was used as an experimental model to provide insights into the role of hydroxyproline in molecular folding and fibril formation. By using chemically cross-linked molecules, we show here that the absence of hydroxyproline residues does not prevent correct folding of the recombinant collagen although it markedly slows down the propagation rate compared with bovine fully hydroxylated homotrimeric collagen I. Relatively slow cis-trans-isomerization in the absence of hydroxyproline likely represents the rate-limiting factor in the propagation of the unhydroxylated collagen helix. Because of the lack of hydroxylation, recombinant collagen molecules showed increased flexibility as well as a reduced melting temperature compared with native homotrimers and heterotrimers, whereas the distribution of charged amino acids was unchanged. However, unlike with bovine collagen I, the recombinant collagen did not self-assemble into banded fibrils in physiological ionic strength buffer at 20 degrees C. Striated fibrils were only obtained with low ionic strength buffer. We propose that, under physiological ionic strength conditions, the hydroxyl groups in the native molecule retain water more efficiently thus favoring correct fibril formation. The importance of hydroxyproline in collagen self-assembly suggested by others from the crystal structures of collagen model peptides is thus confirmed experimentally on the entire collagen molecule.  相似文献   

19.
The heat denaturation of pepsinized bovine nonfibrillar and fibrillar collagen was studied by differential scanning calorimetry. For fibrillar preparations that had been rapidly precipitated with stirring at low ionic strength, then resuspended at physiological ionic strength, multiple denaturational transitions were observed. At heating rates of 10°C/min, melting endotherms occurred at about 44, 50, 53, and 57°C. Fibrillar collagen that was slowly gelled without stirring at physiological ionic strength exhibited a similar series of endotherms, but the lower melting transitions were less conspicuous. In contrast, nonfibrillar bovine collagen in acidic solution showed only a single denaturational transition at 40°C. Nonfibrillar solutions at pH 7, to which inhibitors of fibrillogenesis were added, showed a major endotherm as high as 46°C. These results suggest that reconstituted fibrillar collagen contains a heterogeneous fibril population, possibly including molecules in a nonfibrillar state. It was proposed that the multiple melting endotherms of such preparations were due to sequential melting of molecular and fibril classes, each with a distinct melting temperature. The fibrillar classes may represent three or more types of banded and nonbanded species that differ from each other in packing order, collagen concentration, and possibly also in fibril width and level of cross-linking.  相似文献   

20.
D S Ferran  M Sobel  R B Harris 《Biochemistry》1992,31(21):5010-5016
Elaboration of heparin-protein-binding interactions is necessary to understand how heparin modulates protein function. The heparin-binding domain of some proteins is postulated to be a helix structure which presents a surface of high positive charge density. Thus, a synthetic 19-residue peptide designed to be alpha-helical in character was synthesized, and its interaction with heparin was studied. The peptide was shown to be 75% helix by circular dichroism (CD) spectrometry in neutral pH buffer (at 2 degrees C); helicity increased to nearly 85% under high ionic strength conditions or to nearly 100% in 75% ethanol. Increasing the temperature of the solution caused a change in the spectral envelope consistent with a coil transition of the peptide. The midpoint of the transition (i.e., the temperature at which the helix content was determined to be 50%) was 25 degrees C, and the determined van't Hoff enthalpy change (delta HvH) was 3.2 kcal/mol of peptide. By CD, heparin increases the helix content of the peptide to 100% and increases the apparent thermal stability of the peptide by about 1 kcal/mol. The melting point for the helix/coil transition of the heparin-peptide complex was 50 degrees C. The thermal coefficient of the transition (approximately 300 deg.cm2.dmol-1.degree C-1) was essentially the same for the peptide alone or the peptide-heparin complex. Dissociation of the complex under high ionic strength conditions was also observed in the CD experiment. Biological assays showed less heparin-binding activity than expected (micromolar KD values), but this was attributed to the absence of critical lysyl residues in the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号