首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene that codes for xylose isomerase in Escherichia coli has been cloned by complementation of a xylose isomerase-negative E. coli mutant. The structural gene is 1320 nucleotides in length and codes for a protein of 440 amino acids. An additional 209 nucleotides 5' and 82 nucleotides 3' to the structural gene were also sequenced. To verify that the cloned gene encodes E. coli xylose isomerase, the enzyme was purified to homogeneity and the sequence of the first 25 amino acid residues was determined by a semimicromanual Edman procedure. These results establish that the NH2-terminal methionine of xylose isomerase is specified by an ATG which is 7 nucleotides downstream from a Shine-Dalgarno sequence.  相似文献   

2.
从甘肃玉门油田地表土中分离到一株嗜热木糖利用菌,地芽孢杆菌Y565-5。利用PCR方法从该菌株中克隆得到一个木糖异构酶基因,xylA。该基因开放阅读框长1182 bp,编码394个氨基酸,XylA氨基酸序列与Geobacillus sp.Y412MC52相似性达到99%。将xylA基因克隆到原核表达载体pET-28a(+)上,得到重组质粒pET-28a(+)-xylA,然后将此重组质粒转化至BL21(DE3)中,经IPTG诱导后,通过SDS-PAGE电泳检测出明显的45 kD(相对分子质量)特异性蛋白质条带,并且通过半胱氨酸咔唑法检测出表达产物具有木糖异构酶的活性。对其酶学性质的研究发现,XylA最适温度为90°C,最适pH值为8.0。  相似文献   

3.
A fragment of Bacillus subtilis DNA coding for xylose isomerase and xylulokinase was isolated from a BamHI restriction pool by complementation of an isomerase-defective Escherichia coli strain. The spontaneous insertion of IS5, which occurred during the very slow growth of the E. coli xyl- cells on xylose, allowed the expression of the cloned Bacillus genes in E. coli. Without IS5 insertion, the xylose genes were inactive in E. coli. Deletion experiments indicated that the control of the expression resides within a 270-bp long region at the right end of IS5. Deletion of this region led to a loss of expression, which could be restored by insertion of the lacUV5 promoter fragment at the deletion site. Sequence analysis showed that the site of IS5 insertion is 195 bp upstream from the putative ATG initiation codon of the xylose isomerase structural gene. This ATG is preceded by a ribosome binding sequence and two hexamers also found in promoter regions of other Bacillus genes. Deletion and mutagenesis analysis led to a preliminary map of the Bacillus xylose operon.  相似文献   

4.
The xylose isomerase gene from Bacillus subtilis was cloned from a genomic BamH1 library by complementation of an isomerase defective Escherichia coli strain as previously described. The ATG initiation codon is preceded by a Shine-Dalgarno sequence and two hexamers being characteristic for the promoter region of Bacillus genes. The structural gene consists of 1320 base pairs, thus coding for a polypeptide chain of 440 amino acids with a molecular weight of 49 680. The polypeptide primary structure shows over 50% homology to that of the E. coli xylose isomerase.  相似文献   

5.
We describe here the cloning, characterization and expression in E. coli of the gene coding for a DNA methylase from Spiroplasma sp. strain MQ1 (M.SssI). This enzyme methylates completely and exclusively CpG sequences. The Spiroplasma gene was transcribed in E. coli using its own promoter. Translation of the entire message required the use of an opal suppressor, suggesting that UGA triplets code for tryptophan in Spiroplasma. Sequence analysis of the gene revealed several UGA triplets, in a 1158 bp long open reading frame. The deduced amino acid sequence revealed in M.SssI all common domains characteristic of bacterial cytosine DNA methylases. The putative sequence recognition domain of M.SssI showed no obvious similarities with that of the mouse DNA methylase, in spite of their common sequence specificity. The cloned enzyme methylated exclusively CpG sequences both in vivo and in vitro. In contrast to the mammalian enzyme which is primarily a maintenance methylase, M.SssI displayed de novo methylase activity, characteristic of prokaryotic cytosine DNA methylases.  相似文献   

6.
The cellulase gene from the alkalophilic Bacillus sp. strain 1139 was cloned in Escherichia coli using pBR322. Plasmid pFK1 was isolated from transformants producing cellulase, and the cloned cellulase gene was found to be in a 4 X 6 kb HindIII fragment. The cellulase gene was subcloned in a functional state on a 2 X 9 kb DNA fragment and its nucleotide sequence was determined. The coding sequence showed an open reading frame encoding 800 amino acids. The pFK1-encoded cellulase had the same enzymic properties as the extracellular cellulase produced by the alkalophilic Bacillus sp. strain 1139, but its Mr was slightly higher.  相似文献   

7.
Interspecific complementation of a Xanthomonas campestris pv. campestris phosphomannose isomerase (PMI) mutant was used to isolate a cosmid from a genomic library of Rhizobium meliloti 2011 carrying the pmi gene of this strain. Subcloning experiments localized the coding region to a 2.0-kb SalI-ClaI fragment. Nucleotide sequence analysis of this fragment indicated the presence of two open reading frames (ORFs), coding for 18- and 43-kDa polypeptides. The analysis of the gene function by gene disruption experiments showed that ORF2 codes for pmi. A comparison of the deduced amino acid sequence with the corresponding sequences of the Pseudomonas aeruginosa and Escherichia coli PMIs revealed no significant homology, indicating that the isolated gene encodes a new type of PMI. The construction of a pmi-deficient mutant of R. meliloti using the sacB-sacR cassette technique showed that the loss of PMI activity does not affect the symbiotic properties of this strain.  相似文献   

8.
The thermotolerant methylotrophic yeast Hansenula polymorpha is able to ferment xylose to ethanol. To improve characteristics of xylose fermentation, the recombinant strain Delta xyl1 Delta xyl2-ADelta xyl2-B, with deletions of genes encoding first enzymes of xylose utilization (NAD(P)H-dependent xylose reductase and NAD-dependent xylitol dehydrogenases, respectively), was constructed and used as a recipient for co-overexpression of the Escherichia coli xylA gene coding for xylose isomerase and endogenous XYL3 gene coding for xylulokinase. The expression of both genes was driven by the H. polymorpha glyceraldehyde-3-phosphate dehydrogenase promoter. Xylose isomerase activities of obtained transformants amounted to approximately 80% of that of the bacterial host strain. Xylulokinase activities of the transformants increased twofold when compared with the parental strain. The recombinant strains displayed improved ethanol production during the fermentation of xylose.  相似文献   

9.
The xylose isomerase gene from the thermophile Thermus thermophilus was cloned by using a fragment of the Streptomyces griseofuscus gene as a probe. The complete nucleotide sequence of the gene was determined. T. thermophilus is the most thermophilic organism from which a xylose isomerase gene has been cloned and characterized. The gene codes for a polypeptide of 387 amino acids with a molecular weight of 44,000. The Thermus xylose isomerase is considerably more thermostable than other described xylose isomerases. Production of the enzyme in Escherichia coli, by using the tac promoter, increases the xylose isomerase yield 45-fold compared with production in T. thermophilus. Moreover, the enzyme from E. coli can be purified 20-fold by simply heating the cell extract at 85 degrees C for 10 min. The characteristics of the enzyme made in E. coli are the same as those of enzyme made in T. thermophilus. Comparison of the Thermus xylose isomerase amino acid sequence with xylose isomerase sequences from other organisms showed that amino acids involved in substrate binding and isomerization are well conserved. Analysis of amino acid substitutions that distinguish the Thermus xylose isomerase from other thermostable xylose isomerases suggests that the further increase in thermostability in T. thermophilus is due to substitution of amino acids which react during irreversible inactivation and results also from increased hydrophobicity.  相似文献   

10.
The anaerobic fungus Piromyces sp. strain E2 metabolizes xylose via xylose isomerase and d-xylulokinase as was shown by enzymatic and molecular analyses. This resembles the situation in bacteria. The clones encoding the two enzymes were obtained from a cDNA library. The xylose isomerase gene sequence is the first gene of this type reported for a fungus. Northern blot analysis revealed a correlation between mRNA and enzyme activity levels on different growth substrates. Furthermore, the molecular mass calculated from the gene sequence was confirmed by gel permeation chromatography of crude extracts followed by activity measurements. Deduced amino acid sequences of both genes were used for phylogenetic analysis. The xylose isomerases can be divided into two distinct clusters. The Piromyces sp. strain E2 enzyme falls into the cluster comprising plant enzymes and enzymes from bacteria with a low G+C content in their DNA. The d-xylulokinase of Piromyces sp. strain E2 clusters with the bacterial d-xylulokinases. The xylose isomerase gene was expressed in the yeast Saccharomyces cerevisiae, resulting in a low activity (25±13 nmol min–1mg protein-1). These two fungal genes may be applicable to metabolic engineering of Saccharomyces cerevisiae for the alcoholic fermentation of hemicellulosic materials.  相似文献   

11.
A DNA fragment containing the Escherichia coli D-xylose isomerase gene and D-xylulokinase gene had been isolated from an E. coli genomic bank constructed by Clarke and Carbon. The D-xylose isomerase gene coding for the synthesis of an important industrial enzyme, xylose isomerase, was subcloned into a Bacillus-E. coli bifunctional plasmid. It was found that the intact E. coli gene was not expressed in B. subtilis, a host traditionally used to produce industrial enzymes. An attempt was then made to express the E. coli gene in B. subtilis by fusion of the E. coli xylose isomerase structural gene downstream to the promoter of the penicillinase gene isolated from Bacillus licheniformis. Two such fused genes were constructed and they were found able to be expressed in both B. subtilis and E. coli.  相似文献   

12.
The thermotolerant methylotrophic yeast Hansenula polymorpha is able to ferment xylose to ethanol at high temperatures. H. polymorpha xylose reductase and xylitol dehydrogenase are involved during the first steps of this fermentation. In this article, expression of bacterial xylA genes coding for xylose isomerases from Escherichia coli or Streptomyces coelicolor in the yeast H. polymorpha was shown. The expression was achieved by integration of the xylA genes driven by the promoter of the H. polymorpha glyceraldehyde-3-phosphate dehydrogenase gene ( HpGAP) into the H. polymorpha genome. Expression of the bacterial xylose isomerase genes restored the ability of the H. polymorpha Deltaxyl1 mutant to grow in a medium with xylose as the sole carbon source. This mutant has a deletion of the XYL1 gene encoding xylose reductase and is not able to grow in the xylose medium. The H. polymorpha Deltaxyl1(xylA) transformants displayed xylose isomerase activities, which were near 20% of that of the bacterial host strain. The transformants did not differ from the yeast wild-type strain with respect to ethanol production in xylose medium.  相似文献   

13.
The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.  相似文献   

14.
The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.  相似文献   

15.
Xylose reductases catalyse the initial reaction in the xylose utilisation pathway, the NAD(P)H+H+ dependent reduction of xylose to xylitol. In this work, the xylose reductase gene from Candida tenuis CBS 4435 was cloned and successfully expressed in E. coli. From the purified and partially sequenced protein primers were deduced for PCR. The fragment obtained was used for Southern blot analysis and screening of a subgenomic library. The clone containing the open reading frame was sequenced; the gene consisted of 969 nucleotides coding for a 322 amino acids protein with a molecular mass of 36 kDa. Putative regulatory signals were identified with the help of a Saccharomyces cerevisiae regulatory sequence database. In order to express the xylose reductase in E. coli, the gene was placed under positive and negative control. At low temperatures, the xylose reductase was expressed in soluble and active form up to about 10% of the soluble protein; with rising temperatures formation of visible inclusion bodies occurred. In refolding experiments we were able to recover the major portion of xylose reductase activity from the pellet fraction.  相似文献   

16.
We have determined the nucleotide sequence of the gene encoding thermostable L-2-halo acid dehalogenase (L-DEX) from the 2-chloroacrylate-utilizable bacterium Pseudomonas sp. strain YL. The open reading frame consists of 696 nucleotides corresponding to 232 amino acid residues. The protein molecular weight was estimated to be 26,179, which was in good agreement with the subunit molecular weight of the enzyme. The gene was efficiently expressed in the recombinant Escherichia coli cells: the amount of L-DEX corresponds to about 49% of the total soluble proteins. The predicted amino acid sequence showed a high level of similarity to those of L-DEXs from other bacterial strains and haloacetate dehalogenase H-2 from Moraxella sp. strain B (38 to 57% identity) but a very low level of similarity to those of haloacetate dehalogenase H-1 from Moraxella sp. strain B (10%) and haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (12%). By searching the protein amino acid sequence database, we found two E. coli hypothetical proteins similar to the Pseudomonas sp. strain YL L-DEX (21 to 22%).  相似文献   

17.
L Le Chevanton  G Leblon 《Gene》1989,77(1):39-49
We cloned the ura5 gene coding for the orotate phosphoribosyl transferase from the ascomycete Sordaria macrospora by heterologous probing of a Sordaria genomic DNA library with the corresponding Podospora anserina sequence. The Sordaria gene was expressed in an Escherichia coli pyrE mutant strain defective for the same enzyme, and expression was shown to be promoted by plasmid sequences. The nucleotide sequence of the 1246-bp DNA fragment encompassing the region of homology with the Podospora gene has been determined. This sequence contains an open reading frame of 699 nucleotides. The deduced amino acid sequence shows 72% similarity with the corresponding Podospora protein.  相似文献   

18.
The gene coding for thermophilic xylose (glucose) isomerase of Clostridium thermosulfurogenes was isolated and its complete nucleotide sequence was determined. The structural gene (xylA) for xylose isomerase encodes a polypeptide of 439 amino acids with an estimated molecular weight of 50,474. The deduced amino acid sequence of thermophilic C. thermosulfurogenes xylose isomerase displayed higher homology with those of thermolabile xylose isomerases from Bacillus subtilis (70%) and Escherichia coli (50%) than with those of thermostable xylose isomerases from Ampullariella (22%), Arthrobacter (23%), and Streptomyces violaceoniger (24%). Several discrete regions were highly conserved throughout the amino acid sequences of all these enzymes. To identify the histidine residue of the active site and to elucidate its function during enzymatic xylose or glucose isomerization, histidine residues at four different positions in the C. thermosulfurogenes enzyme were individually modified by site-directed mutagenesis. Substitution of His101 by phenylalanine completely abolished enzyme activity whereas substitution of other histidine residues by phenylalanine had no effect on enzyme activity. When His101 was changed to glutamine, glutamic acid, asparagine, or aspartic acid, approximately 10-16% of wild-type enzyme activity was retained by the mutant enzymes. The Gln101 mutant enzyme was resistant to diethylpyrocarbonate inhibition which completely inactivated the wild-type enzyme, indicating that His101 is the only essential histidine residue involved directly in enzyme catalysis. The constant Vmax values of the Gln101, Glu101, Asn101, and Asp101 mutant enzymes over the pH range of 5.0-8.5 indicate that protonation of His101 is responsible for the reduced Vmax values of the wild-type enzyme at pH below 6.5. Deuterium isotope effects by D-[2-2H]glucose on the rate of glucose isomerization indicated that hydrogen transfer and not substrate ring opening is the rate-determining step for both the wild-type and Gln101 mutant enzymes. These results suggest that the enzymatic sugar isomerization does not involve a histidine-catalyzed proton transfer mechanism. Rather, essential histidine functions to stabilize the transition state by hydrogen bonding to the C5 hydroxyl group of the substrate and this enables a metal-catalyzed hydride shift from C2 to C1.  相似文献   

19.
The gene xylE, coding for xylose-proton symport in Escherichia coli, was cloned and its DNA sequence determined. The cloning strategy utilized lambda placMu insertions and exploited the proximity of xylE to malB. A 2.8-kilobase HincII fragment of cloned DNA restored [14C]xylose transport and xylose-proton symport activities to a xylose transport-negative strain. The xylE gene was identified as a 1473-base pair open reading frame, located 373 base pairs downstream of malG, encoding a hydrophobic protein of Mr 53,607. The amino acid sequence of XylE bore little resemblance to the lactose-proton LacY symporter or melibiose-sodium MelB symporter, but a high degree of homology was found with the arabinose-proton AraE symporter of E. coli and glucose transport proteins of mammals. Structural analyses and comparisons suggest that 12 membrane-spanning segments may occur in the XylE protein.  相似文献   

20.
The gene coding for the maltopentaose-(G5)-forming amylase of Pseudomonas sp. KO-8940 was cloned into Escherichia coli and its nucleotides were sequenced. It was expected that a long open reading frame composed of 1,842-bp that encoded 614 amino acid residues for secretory precursor polypeptide including the typical signal sequence with an NH2-terminal was the gene. An extract of Escherichia coli carrying the cloned G5-forming amylase gene had amylolytic activity with which produced only G5 from starch, the same as that of the donor strain enzyme. In the deduced primary structure of this enzyme, the four conserved regions of many alpha-amylases were found, and the COOH-terminal portion of this enzyme showed high homology with other raw starch digesting amylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号