首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research to date on Amazonian swamps has reinforced the impression that tree communities there are dominated by a small, morphologically specialized subset of the regional flora capable of surviving physiologically challenging conditions. In this paper, using data from a large‐scale tree inventory in upland, floodplain, and mixed palm swamp forests in Amazonian Ecuador, we report that tree communities growing on well‐drained and saturated soils are more similar than previously appreciated. While our data support the traditional view of Amazonian swamp forests as low‐diversity tree communities dominated by palms, they also reveal four patterns that have not been well documented in the literature to date: 1) tree communities in these swamp forests are dominated by a phylogenetically diverse oligarchy of 30 frequent and common species; 2) swamp specialists account for < 10% of species and a minority of stems; 3) most tree species recorded in swamps (> 80%) also occur in adjacent well‐drained forest types; and 4) many tree species present in swamps are common in well‐drained forests (e.g. upland oligarchs account for 34.1% of all swamp stems). These observations imply that, as in the temperate zone, the composition and structure of Amazonian swamp vegetation are determined by a combination of local‐scale environmental filters (e.g. plant survival in permanently saturated soils) and landscape‐scale patterns and processes (e.g. the composition and structure of tree communities in adjacent non‐swamp habitats, the dispersal of propagules from those habitats to swamps). We conclude with suggestions for further research to quantify the relative contributions of these factors in structuring tree communities in Amazonian swamps.  相似文献   

2.
《Flora》2007,202(5):371-382
The fruiting phenology of 22 woody plant species belonging to 19 families was studied with respect to life-forms, physiognomic groups and dispersal modes, for 1 year at monthly intervals, in a tropical dry evergreen forest at Oorani (12°11′N, 79°57′E) on the Coromandel coast of India. At the community level, bimodal fruiting pattern prevailed, with a major peak in the dry season and a minor one in the early rainy season. An annual fruiting pattern was observed in many species and among the studied species fruiting lasted for 2–9 months. There was no significant difference in the frequency of species at three fruiting stages across the life-form categories and many species of upper and lower canopy trees and lianas were in the ripe fruiting phase during the late dry season. Plant physiognomic groups displayed distinct seasonality in fruiting pattern. The fruit maturation period was much longer for the wet season fruiting brevi-deciduous species than evergreen and deciduous species that fruited during the dry season. The variation in timing of fruiting behaviour among zoochorous species demonstrated less seasonality and zoochorous fruits were available throughout the year. Fruiting in anemochorous species peaked during the driest months and dryness favoured the dissemination of seeds. The fruiting patterns observed in the studied tropical dry evergreen forest across various plant traits were comparable with patterns recorded in other tropical seasonal forests.  相似文献   

3.
Sun bear ( Helarctos malayanus ) frugivory and fruiting phenology was investigated in a lowland dipterocarp forest in East Kalimantan, Indonesia. Two mast fruiting events, both coinciding with El Niño/Southern Oscillation events, occurred 4 years apart, resulting in large fluctuations in fruit availability. Sun bear fruit availability decreased from 13 trees ha−1 fruiting month−1 during the mast fruiting to 1.6 trees ha−1 fruiting month−1 during the intermast period. Almost 100% of sun bear diet consisted of fruit during mast fruiting period, whereas sun bear diet was predominantly insectivorous during intermast periods. The majority of sun bear fruit trees displayed 'mast-fruiting' and 'supra-annual' fruiting patterns, indicating sporadic productivity. Sun bears fed on 115 fruit species covering 54 genera and 30 families, with Ficus (Moraceae) being the main fallback fruit. The families Moraceae, Burseraceae, and Myrtaceae contributed more than 50% to the sun bear fruit diet. Sun bear fruit feeding observations were unevenly distributed over forest types with more observations in high-dry forest type despite fewer fruiting events, possibly due to a side-effect of high insect abundance that causes bears to use these areas more intensively. The possible evolutionary pathways of sun bears in relation to the Sundaic environment are discussed.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 489–508.  相似文献   

4.
《植物生态学报》2017,41(7):716
Aims Diversity of climbing seed plants and their reproductive habits and characteristics are central for the understanding of community structure and dynamics of forests and hence are important for forest protection. However, little is known about the climbing seed plants in northern tropical karst seasonal rain forests. Here, using the data of the species diversity and reproductive habits of climbing seed plants in Nonggang, Guangxi, China, we aim to 1) explore the species diversity and distribution of climbing seed plants in northern tropical karst seasonal rain forests, 2) study the flowering and fruiting phenology and 3) the associations of reproductive characteristics to the environment. Methods Species composition, preferred habitat, flowering time, fruiting time and fruit types of climbing seed plants were surveyed. The seasonality of flowering and fruiting were analyzed by concentration ratio and circular distribution. Climbing seed plants were divided into three groups according to their growth forms and places in spatial forest structure: bush ropes, herbaceous vines and lianas. Monthly flowering ratios, fruiting ratios, fruit types and their ratios in different groups were determined. These relationships of flowering ratio, fruiting ratio, fruit type and its ratio to meteorological factors were investigated using Pearson correlation analysis. Important findings There were a total of 333 species of climbing seed plants in Nonggang karst seasonal rain forest, belonging to 145 genera and 56 families. Bush ropes, herbaceous vines and lianas contained 119, 88 and 126 species, respectively. At species level, herbaceous vines were more abundance in valleys, while bush ropes and lianas were more abundance on slopes. Flowering and fruiting of climbing seed plants occurred seasonally, with flowering peaking in April to September, while fruiting peaking in July to December. The seasonality of flowering and fruiting in bush ropes was weaker than in herbaceous vines and lianas. Flowering ratio was significantly positively correlated with rainfall and air temperature, which suggest that flowering peaks in monsoon season. Peak time for fruiting was about three months later than the peak time of flowering, around the end of monsoon season. The ratio of samara species to all fruiting species in lianas was significantly positively correlated with wind speed, but negatively correlated with rainfall and air temperature. It showed that samara in lianas tended to occur in dry season with high wind speed. In conclusion, species diversity and the seasonal features of reproduction of climbing seed plants in Nonggang karst seasonal rain forest were closely related to the spatial and temporal variations of habitat resources.  相似文献   

5.
Borneo has experienced heavy deforestation and forest degradation during the past two decades. In this study the Moderate Resolution Imaging Spectroradiometer was used to monitor land cover change in Borneo between 2002 and 2005 in order to assess the current extent of the forest cover, the deforestation rate and the role of fire. Using Landsat and ground observation for validation it was possible to discriminate 11 land cover classes. In 2002 57% of the land surface of Borneo was covered with forest of which 74% was dipterocarp and more than 23% peat swamp forest. The average deforestation rate between 2002 and 2005 was 1.7% yr− 1. The carbon-rich ecosystem of peat swamp forests showed a deforestation rate of 2.2%. Almost 98% of all deforestation occurred within a range of 5 km to the forest edge. Fire is highly correlated with land cover changes. Most fires were detected in degraded forests. Ninety-eight per cent of all forest fires were detected in the 5 km buffer zone, underlining that fire is the major driver for forest degradation and deforestation.  相似文献   

6.
The study determined the abundance and species composition of fig trees that fruited in the different forest types of Kalinzu Forest Reserve (KFR), Uganda. It also assessed the seasonal variations in abundance and species composition of the fig trees, the relationships between the fruiting patterns and rainfall and the figs’ inter‐ and intraspecific patterns of fruiting episodes. Sixteen fig species represented by 515 individuals were monitored monthly from December 2007 to January 2010. Most individuals and species that fruited were in the secondary forest types (the Musanga‐ and Parinari‐dominated secondary forests) and abundances of individuals of the different species were significantly associated with particular forest types. One colonizing species (Ficus sur) was the most abundant species that fruited and was mostly recorded in the secondary forests. Species composition and abundances of trees that fruited varied seasonally, and only the abundances of two canopy species (Ficus lingua and Ficus sansibarica) were significantly related with monthly rainfall. Most species experienced at least four fruiting phases, and F. sur displayed the longest episode covering 22 months. The results suggest that the past intensive logging in KFR promoted the regeneration of a diversity of fig species, and most species generally experience community‐wide asynchronous fruiting.  相似文献   

7.
In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17–28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the subsequent fruit-scarce period can be an effective strategy to survive the lean period (winter).  相似文献   

8.
Proximity to forests contributes to the recolonisation of anthropogenic‐disturbed areas through seed input. We evaluated the role of proximity to a mature forest in the recolonisation of an agricultural area that has been abandoned for 18 years and is currently a young forest. Seed rain was monitored at fixed distances from the mature forest. The type of surface recolonisation (germination versus resprouting) and the reproductive season were measured in both forests. The majority of plants recolonising the young forest originated from seed germination. Proximity to the mature forest contributed to the seed rain in the young forest; however, 18 years has not provided sufficient time for the recolonisation of 80 species present in the mature forest. Some species shared between forests differed in their fruiting season and seed dispersal. The seed rain had a total species richness of 56, a total density of 2270 seeds·m?2·year?1 and predominance of self‐ and wind dispersal. A significant reduction in seed rain with increasing distance from the mature forest was observed. The young forest contained 35 species not observed in the mature forest, and the floristic similarity between the two forests was 0.5, indicating that the two forests are floristically distinct.  相似文献   

9.
Most phenological studies to date have taken place in upland forest above the maximum flood level of nearby streams and rivers. In this paper, we examine the phenological patterns of tree assemblages in a large Amazonian forest landscape, including both upland (terra firme) and seasonally flooded (várzea and igapó) forest. The abundance of vegetative and reproductive phenophases was very seasonal in all forests types. Both types of flooded forest were more deciduous than terra firme, shedding most of their leaves during the inundation period. Pulses of new leaves occurred mainly during the dry season in terra firme, whereas those in the two floodplain forests were largely restricted to the end of the inundation period. Flowering was concentrated in the dry season in all forest types and was strongly correlated with the decrease in rainfall. The two floodplain forests concentrated their fruiting peaks during the inundation period, whereas trees in terra firme tended to bear fruits at the onset of the wet season. The results suggest that the phenological patterns of all forest types are largely predictable and that the regular and prolonged seasonal flood pulse is a major determinant of phenological patterns in várzea and igapó, whereas rainfall and solar irradiance appear to be important in terra firme. The three forest types provide a mosaic of food resources that has important implications for the conservation and maintenance of wide‐ranging frugivore populations in Amazonian forests.  相似文献   

10.

Background

Various studies have shown that the population densities of a number of forest vertebrates, such as orangutans, are higher on Sumatra than Borneo, and that several species exhibit smaller body sizes on Borneo than Sumatra and mainland Southeast Asia. It has been suggested that differences in forest fruit productivity between the islands can explain these patterns. Here we present a large-scale comparison of forest fruit production between the islands to test this hypothesis.

Methodology/Principal Findings

Data on fruit production were collated from Sumatran and Bornean sites. At six sites we assessed fruit production in three forest types: riverine, peat swamp and dryland forests. We compared fruit production using time-series models during different periods of overall fruit production and in different tree size classes. We examined overall island differences and differences specifically for fruiting period and tree size class. The results of these analyses indicate that overall the Sumatran forests are more productive than those on Borneo. This difference remains when each of the three forest types (dryland, riverine, and peat) are examined separately. The difference also holds over most tree sizes and fruiting periods.

Conclusions/Significance

Our results provide strong support for the hypothesis that forest fruit productivity is higher on Sumatra than Borneo. This difference is most likely the result of the overall younger and more volcanic soils on Sumatra than Borneo. These results contribute to our understanding of the determinants of faunal density and the evolution of body size on both islands.  相似文献   

11.
The timing and frequency of flowering and fruiting events are key tropical forest characteristics that have substantial influence on fauna. Although our understanding of geographic variation in habitat‐wide timing and frequency of flowering and fruiting is advancing, corresponding information for individual tree species is limited. Thus, we compared climate and reproductive phenology of 16 tree species over 70 mo at two Bornean tropical peat‐swamp forest sites. We found significant inter‐site correlations in rainfall and temperature, and only small absolute temperature differences. In both sites, most species exhibited within‐site synchrony in flowering and fruiting onset. Broad‐scale flowering and fruiting onset frequency classifications showed high congruence between sites. Significant correlations in flowering and fruiting onset timing between sites were found for only 19 and 17 percent of the species, respectively. This remained the case when applying 1‐ and 2‐month lag periods for both sites, with neither site consistently lagging behind. Significant differences in the exact frequency of new flowering and fruiting events were detected for 44 and 58 percent of species, respectively, and no significant relationships between the onset timing synchrony and exact frequency of new reproductive events were found for either flowers or fruit. We conclude that inter‐site climatic and ecological similarities do not necessarily lead to high inter‐site synchrony in either onset timing or exact frequency of tree reproductive events. Potential reasons for this are discussed, as are the implications for understanding tropical forest ecology and improving forest restoration project seed collections.  相似文献   

12.
The occurrence and habitat associations of the majority of invertebrate groups in boreal forests are poorly known, even though these groups represent perhaps over 99% of the animal species diversity in the forests. We studied the beetle (Coleoptera) fauna of four forest site types in northern Finland: in spruce mires, herb rich, mesic and sub-xeric forests. We sampled beetles in 32 study sites with five window and five pitfall traps in each. We describe the species abundance and diversity patterns within and among forest types and relate these patterns to structural components of the forests. The volume of decaying wood varied from 14 to 93 m3 ha−1 among sampling sites. The total beetle catch consisted of 100 333 individuals and 435 species. The beetle species richness did not vary according to site fertility but the number of specimens increased with increasing fertility in heath forest sites. The richness of beetle species correlated only weakly with any of the stand structure characteristics at the stand level. Nevertheless, the detrended correspondence analysis (DCA) indicated that different beetle assemblages are characteristic of different forest types. The high level of beta-diversity in beetles among forest types indicates that focusing exclusively on, for example, key-biotopes (presumed biodiversity hotspots) when selecting areas to be set aside would result in a situation where a large proportion of species, even of the rare and threatened ones, is not included in this network of protected areas. This suggests that the complementary set of different forest types may be the best general strategy to maintain the overall beetle species diversity in boreal forests.  相似文献   

13.
A quantitative inventory of trees and lianas was conducted (1) to compare floristic composition, diversity and stem density variation between three different forest types (tierra firme, floodplain and swamp), and (2) to analyse the relationships between floristic similarity and forest structure in two regions ~60 km apart in Yasuní National Park, Amazonian Ecuador. A total of 1,087 species with a diameter at breast height ≥ 2.5 cm were recorded in 25 0.1-ha plots. Tierra firme was the habitat with the highest number of species and stem density for trees and lianas, followed by floodplain and swamp in both regions. Two hypotheses that have been independently proposed to describe plant distribution in tropical rain forests, together explain species spatial distribution in this study. The fact that the 30 most important species per forest type (totalling 119 species) accounted for 48.2% of total individuals supports the oligarchy hypothesis. Likewise, 28 out of these 119 species are reported as restricted to a single forest type, which supports the environmental-determinism hypothesis. In general, both canopy and understorey trees and lianas showed rather similar floristic patterns across different forest types and regions.  相似文献   

14.
  • Flowering and fruiting are key events in the life history of plants, and both are critical to their reproductive success. Besides the role of evolutionary history, plant reproductive phenology is regulated by abiotic factors and shaped by biotic interactions with pollinators and seed dispersers. In Melastomataceae, a dominant Neotropical family, the reproductive systems vary from allogamous with biotic pollination to apomictic, and seed dispersal varies from dry (self‐dispersed) to fleshy (animal‐dispersed) fruits. Such variety in reproductive strategies is likely to affect flowering and fruiting phenologies.
  • In this study, we described the reproductive phenology of 81 Melastomataceae species occurring in two biodiversity hotspots: the Atlantic rain forest and the campo rupestre. We aim to disentangle the role of abiotic and biotic factors defining flowering and fruiting times of Melastomataceae species, considering the contrasting breeding and seed dispersal systems, and their evolutionary history.
  • In both vegetation types, pollinator‐dependent species had higher flowering seasonality than pollinator‐independent ones. Flowering patterns presented phylogenetic signal regardless of vegetation type. Fruiting of fleshy‐fruited species was seasonal in campo rupestre but not in Atlantic rain forest; the fruiting of dry‐fruited species was also not seasonal in both vegetation types. Fruiting showed a low phylogenetic signal, probably because the influence of environment and dispersal agents on fruiting time is stronger than the phylogenetic affinity.
  • Considering these ecophylogenetic patterns, our results indicate that flowering may be shaped by the different reproductive strategies of Melastomataceae lineages, while fruiting patterns may be governed mainly by the seed dispersal strategy and flowering time, with less phylogenetic influence.
  相似文献   

15.
Forest stand age plays a major role in regulating carbon fluxes in boreal and temperate ecosystems. Young boreal forests represent a relatively small but persistent source of carbon to the atmosphere over 30 years after disturbance, while temperate forests switch from a substantial source over the first 10 years to a notable sink until they reach maturity. Russian forests are the largest contiguous forest belt in the world that accounts for 17% of the global forest cover; however, despite its critical role in controlling global carbon cycle, little is known about spatial patterns of young forest distribution across Russia as a whole, particularly before the year 2000. Here, we present a map of young (0–27 years of age) forests, where 12‐ to 27‐year‐old forests were modeled from the single‐date 500 m satellite record and augmented with the 0‐ to 11‐year‐old forest map aggregated from the 30 m resolution contemporary record between 2001 and 2012. The map captures the distribution of forests with the overall accuracy exceeding 85% within three largest bioclimatic vegetation zones (northern, middle, and southern taiga), although mapping accuracy for disturbed classes was generally low (the highest of 31% for user's and producer's accuracy for the 12–27 age class and the maximum of 74% for user's and 32% for producer's accuracy for the 0–11 age class). The results show that 75.5 ± 17.6 Mha (roughly 9%) of Russian forests were younger than 30 years of age at the end of 2012. The majority of these 47 ± 4.7 Mha (62%) were distributed across the middle taiga bioclimatic zone. Based on the published estimates of net ecosystem production (NEP) and the produced map of young forests, this study estimates that young Russian forests represent a total sink of carbon at the rate of 1.26 Tg C yr?1.  相似文献   

16.
Tropical peat swamp forests are important and endangered ecosystems, although little is known of their microbial diversity and ecology. We used molecular and enzymatic techniques to examine patterns in prokaryotic community structure and overall microbial activity at 0-, 10-, 20-, and 50-cm depths in sediments in a peat swamp forest in Malaysia. Denaturing gradient gel electrophoresis profiles of amplified 16S ribosomal ribonucleic acid (rRNA) gene fragments showed that different depths harbored different bacterial assemblages and that Archaea appeared to be limited to the deeper samples. Cloning and sequencing of longer 16S rRNA gene fragments suggested reduced microbial diversity in the deeper samples compared to the surface. Bacterial clone libraries were largely dominated by ribotypes affiliated with the Acidobacteria, which accounted for at least 27–54% of the sequences obtained. All of the sequenced representatives from the archaeal clone libraries were Crenarchaeota. Activities of microbial extracellular enzymes involved in carbon, nitrogen, and phosphorus cycling declined appreciably with depth, the only exception being peroxidase. These results show that tropical peat swamp forests are unusual systems with microbial assemblages dominated by members of the Acidobacteria and Crenarchaeota. Microbial communities show clear changes with depth, and most microbial activity is likely confined to populations in the upper few centimeters, the site of new leaf litter fall, rather than the deeper, older, peat layers.  相似文献   

17.
The reproductive phenology of 60 understorey species was monitored at monthly intervals for 20 months in a medium elevation wet evergreen forest in the Southern Western Ghats. The life forms monitored were herbs (including terrestrial orchids), shrubs and small trees. Flowering and fruiting were non‐uniform with a dry season flowering peak and wet season fruiting peak. Flowering in the understorey correlated negatively with rainfall. No significant correlation was detected for fruiting. Life forms had flowering and fruiting peaks at different times of the year.  相似文献   

18.
Managing the pattern of forest harvest: lessons from wildfire   总被引:1,自引:0,他引:1  
Managing forests for sustainable use requires that both the biological diversity of the forests and a viable forest industry be maintained. A current approach towards maintaining biological diversity is to pattern forest management practices after those of natural disturbance events. This paradigm hypothesizes that ecological processes will be maintained best where active management approximates natural disturbance events. The forest management model now used in most sub-boreal and boreal forests calls for regularly dispersed clearcuts no greater than 60–100 ha in size. However, the spatial characteristics of the landscape produced by this model are distinctly different from the historic pattern generated by wildfire, which was heretofore the dominant stand-replacing process in these forests. Wildfire creates a more complex landscape spatial pattern with greater range in patch size and more irregular disturbance boundaries. Individual wildfires are often over 500 ha but leave patches of unburned forest within them. The combination of these attributes is not present in recent clearcuts. Allowing a proportion of larger (i.e.>500ha) harvest units may provide distinct economic advantages that could outweight the opportunity costs of leaving some patches of forest behind. For the forest type examined, further evaluation of modelling forest harvest patterns more closely after the patterns created by wildfire is required as it may achieve a good balance and strike a suitable compromise between certain ecological and economic objectives of sustainable development.  相似文献   

19.
Beyond broad‐scale investigations of species diversity and abundance, there is little information on how land conversion in the tropics is affecting the behavior and demographics of surviving species. To fill these knowledge gaps, we explored the effects of land‐use change on the ecologically important and threatened bearded pig (Sus barbatus) over seven years in Borneo. Random placement of camera traps across a land‐use gradient of primary forest, logged forest, and oil palm plantations (32,542 trap nights) resulted in 2,303 independent capture events. Land‐use was associated with changes in the age structure and activity patterns of photographed individuals, alongside large changes in abundance shown previously. The proportion of adults recorded declined from 92% in primary forests to 76% in logged forests, and 67% in plantations, likely indicating increased fecundity in secondary forests. Activity level (capture rate) did not vary, but activity patterns changed markedly, from diurnal in primary forests, crepuscular in logged forests, to nocturnal in plantations. These changes corresponded with avoidance of diurnal human activity and may also protect bearded pigs from increased thermal stress in warmer degraded forests. The percentage of adult captures that were groups rather than individuals increased five‐fold from primary forests (4%) to logged forests (20%), possibly due to increased mating or in response to perceived threats from indirect human disturbance. We recommend further investigation of the demographic and behavioral effects of land‐use change on keystone species as altered population structure, activity patterns, and social behavior may have knock‐on effects for entire ecosystems.  相似文献   

20.
长白山森林/沼泽生态交错带群落和环境梯度分析   总被引:29,自引:6,他引:23  
揭示了森林-沼泽过渡带群落的结构、生产力、植物多样性等群落梯度和交错环境梯度的相关规律,并结合交错区环境梯度分析这些群落特征形成机制,为维持、保护与经营管理这一交错带生物资源提供了理论依据。将长白山地区森林和高、中、低位沼泽所形成的三大类型过渡带研究对象,采用样带网格的调查方法,并应用系统软件分析方法建立了经验回归模型,研究了森林/沼泽生态交错带群落的种类组成、群落建群种径级结构与年龄结构、植物多样性、群落生产力及其随生态交错带环境梯度变化趋势。结果表明,森林/沼泽生态交错带群落结构特征、植物多样性、群落生产力均随着交错带环境梯度的变化而呈现有规律的分布格局,沿着沼泽至森林方向的交错区环境梯度,群落建种种发生更替现象;群落种类数目呈现指数递增趋势;群落的径级结构呈现双曲线分布规律性;年龄结构一般呈三次式分布规律;揿样性呈二次式梯增分布趋势;群落生物量均呈现三次函数曲线递增趋势,表现出群落梯度和环境梯度的高度相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号