首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
An RNA-dependent ATPase from Chlamydomonas reinhardII   总被引:1,自引:0,他引:1  
An RNA-dependent ATPase has been isolated from extracts of Chlamydomonas reinhardii. The enzyme catalyzes the hydrolysis of ATP, dATP, CTP and dCTP to the corresponding nucleoside diphosphate and Pi in the presence of Mg2+ or Mn2+ and an RNA cofactor. In 1 mM MgCl2 it displays the greatest activity with poly(A), poly(I) and poly(U); and somewhat lower activity with poly(C) and T7 RNA. Although the enzyme is active with single-stranded DNA, all the single-stranded RNAs tested were significantly more effective cofactors than any of the single or double-stranded DNAs tested. A comparison of this ATPase with other RNA-dependent ATPases indicates that is has more in common with the ATPase isolated from the nuclei of animal cells than with the RNA synthesis termination protein rho, the major RNA-dependent ATPase from Escherichia coli. Although chloroplasts of C. reinhardii are known to contain many bacterial-like gene expression components, the presence of an enzyme with close homology to the E. coli rho protein was not detected.  相似文献   

8.
9.
Screening of a diverse set of bisbenzimidazoles for inhibition of the hepatitis C virus (HCV) serine protease NS3/NS4A led to the identification of a potent Zn(2+)-dependent inhibitor (1). Optimization of this screening hit afforded a 10-fold more potent inhibitor (46) under Zn(2+) conditions (K(i)=27nM). This compound (46) binds also to NS3/NS4A in a Zn(2+) independent fashion (K(i)=1microM). The SAR of this class of compounds under Zn(2+) conditions is highly divergent compared to the SAR in the absence of Zn(2+), suggesting two distinct binding modes.  相似文献   

10.
1. Isolated outer membranes from rat spleen mitochondria can be stored in liquid N(2) for several weeks without significant loss of ATPase (adenosine triphosphatase) activity. 2. The ATPase reaction has a broad pH optimum centering on neutral pH, with little significant activity above pH9.0 or below pH5.5. 3. A sigmoidal response of the ATPase activity to temperature is observed between 0 and 55 degrees C, with complete inactivation at 60 degrees C. The Arrhenius plot shows that the activation energy above the transition temperature (22 degrees C) (E(a)=144kJ/mol) is one-third of that calculated for below the transition temperature (E'(a)=408kJ/mol). 4. The outer-membrane ATPase (K(m) for MgATP=50mum) is inactive unless Mg(2+) is added, whereas the inner-membrane ATPase (K(m) for ATP=11mum) is active without added Mg(2+) unless the mitochondria have been depleted of all endogenous Mg(2+) (by using ionophore A23187). 5. The substrate for the outer-membrane ATPase is a bivalent metal ion-nucleoside triphosphate complex in which Mg(2+) (K(m)=50mum) can be replaced effectively by Ca(2+) (K(m)=6.7mum) or Mn(2+), and ATP by ITP. Cu(2+), Co(2+), Sr(2+), Ba(2+), Ni(2+), Cd(2+) and Zn(2+) support very little ATP hydrolysis. 6. Univalent metal ions (Na(+), K(+), Rb(+), Cs(+) and NH(4) (+), but not Li(+)) stimulate the MgATPase activity (<10%) at low concentrations (50mm), but, except for K(+), are slightly inhibitory (20-30%) at higher concentrations (500mm). 7. The Mg(2+)-stimulated ATPase activity is significantly inhibited by Cu(2+) (K(i)=90mum), Ni(2+) (K(i)=510mum), Zn(2+) (K(i)=680mum) and Co(2+) (K(i)=1020mum), but not by Mg(2+), Ca(2+), Ba(2+) or Sr(2+). 8. The outer-membrane ATPase is insensitive to the inhibitors oligomycin, NN'-dicyclohexylcarbodiimide, NaN(3), ouabain and thiol-specific reagents. A significant inhibition is observed at high concentrations of AgNO(3) (0.5mm) and NaF (10mm). 9. The activity towards MgATP is competitively inhibited by the product MgADP (K(i)=0.7mm) but not by the second product P(i) or by 5'-AMP.  相似文献   

11.
The Ca2+-stimulated, Mg2+-dependent ATPase of SV40 transformed WI38 lung fibroblast homogenates exhibits a high affinity for Ca2+ (K0.5 = 0.20 microM) and moderately high affinity for ATP (Km = 28.6 microM) and Mg2+ (K0.5 = 138.5 microM). This activity was NaN3, KCN and oligomycin insensitive but very sensitive to vanadate (I50 = 0.5 microM) suggesting its being neither mitochondrial or microsomal but plasma membrane in origin. Under optimal conditions of protein, hydrogen ion and substrate concentration, 16-19 nmoles phosphate was released per min per mg protein. Hill plot analysis indicated no cooperativity to occur between Ca2+ binding sites. Nucleotides other than ATP and dATP were ineffective as substrates. The trivalent cation, lanthanum (La3+) completely inhibited hydrolysis of ATP at approximately 70 microM (I50 = 25 microM). Calmodulin antagonists trifluoperazine and calmidazolium inhibited ATP hydrolysis in a dose dependent fashion.  相似文献   

12.
An ATP-dependent transport system is responsible for the cellular extrusion of cGMP. The objective of the present study was to determine the effect of Mg2+, ATP and other nucleotides (2'-dATP, GTP and ADP), exogenous ATPase modulators (such as metavanadate, ouabain, EGTA, NEM, bafilomycin A1 and oligomycin A) on the cGMP transport. The uptake of [3H]-cGMP (1 microM) at 37 degrees C was studied in inside-out vesicles from human erythrocytes. Magnesium caused a maximal activation between 5 and 10 mM and the optimal ATP concentration was 1.25 mM with K50-values of 0.3-0.5 mM. Among other nucleotides tested, 2'-dATP (K50 of 0.7 mM) was nearly as effective as ATP, whereas cGMP accumulated slowly in the presence of GTP. ADP and metavanadate (P-type ATPase inhibitor) showed to be competitive inhibitors with Ki values of 0.15 mM and 10 microns, respectively. NEM (a sulphydryl agent) reduced the ATP-dependent uptake in a concentration-dependent manner with a Ki value of 10 microM. Ouabain (Na+/K(+)-ATPase inhibitor) had no effect. Bafilomycin A1 (V-type ATPase inhibitor) and oligomycin (F-type ATPase inhibitor) were the most potent inhibitors with Ki values of 0.7 and 1.8 microM, respectively. The present study suggests that the cellular cGMP extrusion is energized by an ATPase with a unique inhibitor profile, which clearly differentiates it from the other major classes of membrane-bound ATPases.  相似文献   

13.
14.
ZntA is a P-type ATPase which transports Zn(2+), Pb(2+) and Cd(2+) out of the cell. Two cysteine-containing motifs, CAAC near the N-terminus and CPC in transmembrane helix 6, are involved in binding of the translocated metal. We have studied these motifs by mutating the cysteines to serines. The roles of two other possible metal-binding residues, K(693) and D(714), in transmembrane helices 7 and 8, were also addressed. The mutation CAAC-->SAAS reduces the ATPase activity by 50%. The SAAS mutant is phosphorylated with ATP almost as efficiently as the wild type. However, its phosphorylation with P(i) is poorer than that of the wild type and its dephosphorylation rate is faster than that of the wild type ATPase. The CPC-->SPS mutant is inactive but residual phosphorylation with ATP could still be observed. The most important findings of this work deal with the prospective metal-binding residues K(693) and D(714): the substitution K693N eliminates the Zn(2+)-stimulated ATPase activity completely, although significant Zn(2+)-dependent phosphorylation by ATP remains. The K693N ATPase is hyperphosphorylated by P(i). ZntA carrying the change D714M has strong metal-independent ATPase activity and is very weakly phosphorylated both by ATP and P(i). In conclusion, K(693) and D(714) are functionally essential and appear to contribute to the metal specificity of ZntA, most probably by being parts of the metal-binding site made up by the CPC motif.  相似文献   

15.
1. A sarcolemmal fraction was isolated from hamster hind-leg skeletal muscles by successive treatment with lithium bromide and potassium chloride. The membranous fraction was observed to contain a highly active Ca(2+)-stimulated ATPase (adenosine triphosphatase), a Mg(2+)-stimulated ATPase, and an Na(+)+K(+)-stimulated Mg(2+)-dependent ouabain-sensitive ATPase. 2. The Ca(2+)-stimulated ATPase activity was pH-dependent, the optimum being pH7.6. 3. Optimum activation of this enzyme was obtained with 3-4mm-Ca(2+) when 4mm-ATP was present as a substrate, and was not influenced by Na(+), K(+) or ouabain, whereas 2,4-dinitrophenol, sodium azide, oligomycin, sodium fluoride and ethanedioxybis(ethylamine)tetra-acetate were inhibitory. 4. The Ca(2+)-stimulated ATPase was markedly inhibited by thiol-blocking reagents, and cysteine was able to reverse this inhibition. 5. Various bivalent cations stimulated ATP hydrolysis by the sarcolemmal fraction in the following decreasing order of potency: Mg(2+), Ca(2+), Mn(2+), Co(2+), Sr(2+), Ba(2+), Zn(2+), Cu(2+).  相似文献   

16.
J Okkeri  T Haltia 《Biochemistry》1999,38(42):14109-14116
Cation-transporting P-type ATPases comprise a major membrane protein family, the members of which are found in eukaryotes, eubacteria, and archaea. A phylogenetically old branch of the P-type ATPase family is involved in the transport of heavy-metal ions such as copper, silver, cadmium, and zinc. In humans, two homologous P-type ATPases transport copper. Mutations in the human proteins cause disorders of copper metabolism known as Wilson and Menkes diseases. E. coli possesses two genes for heavy-metal translocating P-type ATPases. We have constructed an expression system for one of them, ZntA, which encodes a 732 amino acid residue protein capable of transporting Zn(2+). A vanadate-sensitive, Zn(2+)-dependent ATPase activity is present in the membrane fraction of our expression strain. In addition to Zn(2+), the heavy-metal ions Cd(2+), Pb(2+), and Ag(+) activate the ATPase. Incubation of membranes from the expression strain with [gamma-(33)P]ATP in the presence of Zn(2+), Cd(2+), or Pb(2+) brings about phosphorylation of two membrane proteins with molecular masses of approximately 90 and 190 kDa, most likely representing the ZntA monomer and dimer, respectively. Although Cu(2+) can stimulate phosphorylation by [gamma-(33)P]ATP, it does not activate the ATPase. Cu(2+) also prevents the Zn(2+) activation of the ATPase when present in 2-fold excess over Zn(2+). Ag(+) and Cu(+) appear not to promote phosphorylation of the enzyme. To study the effects of Wilson disease mutations, we have constructed two site-directed mutants of ZntA, His475Gln and Glu470Ala, the human counterparts of which cause Wilson disease. Both mutants show a reduced metal ion stimulated ATPase activity (about 30-40% of the wild-type activity) and are phosphorylated much less efficiently by [gamma-(33)P]ATP than the wild type. In comparison to the wild type, the Glu470Ala mutant is phosphorylated more strongly by [(33)P]P(i), whereas the His475Gln mutant is phosphorylated more weakly. These results suggest that the mutation His475Gln affects the reaction with ATP and P(i) and stabilizes the enzyme in a dephosphorylated state. The Glu470Ala mutant seems to favor the E2 state. We conclude that His475 and Glu470 play important roles in the transport cycles of both the Wilson disease ATPase and ZntA.  相似文献   

17.
The effects of the enantiomers of a number of flexible and cis-constrained GABA analogues were tested on GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. (1S,2R)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((+)-CAMP), a potent and full agonist at the rho1 (EC(50) approximately 40 microM, I(max) approximately 100%) and rho 2 (EC(50) approximately 17 microM, I(max) approximately 100%) receptor subtypes, was found to be a potent partial agonist at rho3 (EC(50) approximately 28 microM, I(max) approximately 70%). (1R,2S)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((-)-CAMP), a weak antagonist at human rho1 (IC(50) approximately 890 microM) and rho2 (IC(50) approximately 400 microM) receptor subtypes, was also found to be a moderately potent antagonist at rat rho3 (IC(50) approximately 180 microM). Similarly, (1R,4S)-4-aminocyclopent-2-ene-1-carboxylic acid ((+)-ACPECA) was a full agonist at rho1 (EC(50) approximately 135 microM, I(max) approximately 100%) and rho2 (EC(50) approximately 60 microM, I(max) approximately 100%), but only a partial agonist at rho3 (EC(50) approximately 112 microM, I(max) approximately 37%), while (1S,4R)-4-aminocyclopent-2-ene-1-carboxylic acid ((-)-ACPECA) was a weak antagonist at all three receptor subtypes (IC(50)>300 microM). 4-Amino-(S)-2-methylbutanoic acid ((S)-2MeGABA) and 4-amino-(R)-2-methylbutanoic acid ((R)-2MeGABA) followed the same trend, with (S)-2MeGABA acting as a full agonist at the rho1 (EC(50) approximately 65 microM, I(max) approximately 100%), and rho2 (EC(50) approximately 20 microM, I(max) approximately 100%) receptor subtypes, and a partial agonist at rho3 (EC(50) approximately 25 microM, I(max) approximately 90%). (R)-2MeGABA, however, was a moderately potent antagonist at all three receptor subtypes (IC(50) approximately 16 microM at rho1, 125 microM at rho2 and 35 microM at rho3). On the basis of these expanded biological activity data and the solution-phase molecular structures obtained at the MP2/6-31+G* level of ab initio theory, a rationale is proposed for the genesis of this stereoselectivity effect.  相似文献   

18.
The effects of the enantiomers of (+/-)-CAMP and (+/-)-TAMP [(+/-)-cis- and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acids, respectively], which are cyclopropane analogues of GABA, were tested on GABA(A) and GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage clamp methods. (+)-CAMP was found to be a potent and full agonist at homooligomeric GABA(C) receptors (K:(D) approximately 40 microM: and I:(max) approximately 100% at rho(1); K:(D) approximately 17 microM: and I:(max) approximately 100% at rho(2)) but a very weak antagonist at alpha(1)beta(2)gamma(2L) GABA(A) receptors. In contrast, (-)-CAMP was a very weak antagonist at both alpha(1)beta(2)gamma(2L) GABA(A) receptors and homooligomeric GABA(C) receptors (IC(50) approximately 900 microM: at rho(1) and approximately 400 microM: at rho(2)). Furthermore, (+)-CAMP appears to be a superior agonist to the widely used GABA(C) receptor partial agonist cis-4-aminocrotonic acid (K:(D) approximately 74 microM: and I:(max) approximately 78% at rho(1); K:(D) approximately 70 microM: and I:(max) approximately 82% at rho(2)). (-)-TAMP was the most potent of the cyclopropane analogues on GABA(C) receptors (K:(D) approximately 9 microM: and I:(max) approximately 40% at rho(1); K:(D) approximately 3 microM: and I:(max) approximately 50-60% at rho(2)), but it was also a moderately potent GABA(A) receptor partial agonist (K:(D) approximately 50-60 microM: and I:(max) approximately 50% at alpha(1)beta(2)gamma(2L) GABA(A) receptors). (+)-TAMP was a less potent partial agonist at GABA(C) receptors (K:(D) approximately 60 microM: and I:(max) approximately 40% at rho(1); K:(D) approximately 30 microM: and I:(max) approximately 60% at rho(2)) and a weak partial agonist at alpha(1)beta(2)gamma(2L) GABA(A) receptors (K:(D) approximately 500 micro: and I:(max) approximately 50%). None of the isomers of (+/-)-CAMP and (+/-)-TAMP displayed any interaction with GABA transport at the concentrations tested. Molecular modeling based on the present results provided new insights into the chiral preferences for either agonism or antagonism at GABA(C) receptors.  相似文献   

19.
The effect of iron on the activity of the plasma membrane H(+)-ATPase (PMA) from corn root microsomal fraction (CRMF) was investigated. In the presence of either Fe(2+) or Fe(3+) (100-200 microM of FeSO(4) or FeCl(3), respectively), 80-90% inhibition of ATP hydrolysis by PMA was observed. Half-maximal inhibition was attained at 25 microM and 50 microM for Fe(2+) and Fe(3+), respectively. Inhibition of the ATPase activity was prevented in the presence of metal ion chelators such as EDTA, deferoxamine or o-phenanthroline in the incubation medium. However, preincubation of CRMF in the presence of 100 microM Fe(2+), but not with 100 microM Fe(3+), rendered the ATPase activity (measured in the presence of excess EDTA) irreversibly inhibited. Inhibition was also observed using a preparation further enriched in plasma membranes by gradient centrifugation. Addition of 0.5 mM ATP to the preincubation medium, either in the presence or in the absence of 5 mM MgCl(2), reduced the extent of irreversible inhibition of the H(+)-ATPase. Addition of 40 microM butylated hydroxytoluene and/or 5 mM dithiothreitol, or deoxygenation of the incubation medium by bubbling a stream of argon in the solution, also caused significant protection of the ATPase activity against irreversible inhibition by iron. Western blots of CRMF probed with a polyclonal antiserum against the yeast plasma membrane H(+)-ATPase showed a 100 kDa cross-reactive band, which disappeared in samples previously exposed to 500 microM Fe(2+). Interestingly, preservation of the 100 kDa band was observed when CRMF were exposed to Fe(2+) in the presence of either 5 mM dithiothreitol or 40 microM butylated hydroxytoluene. These results indicate that iron causes irreversible inhibition of the corn root plasma membrane H(+)-ATPase by oxidation of sulfhydryl groups of the enzyme following lipid peroxidation.  相似文献   

20.
Anti-glycation activity of our anti-oxidant quinone library was measured and several 2,3-dimethoxy-5-methyl-1,4-benzoquinones and 2-methyl-1,4-naphthoquinones were identified as novel inhibitors of glycation, of which 2,3-dimethoxy-5-methyl-1,4-benzoquinones 13b is the most potent glycation inhibitor with around 50 microM of the IC(50) value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号