首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in the genes GJB2 and GJB6 encoding human connnexin26 (hCx26) and connexin30 (hCx30), respectively, are the leading cause of non-syndromic prelingual deafness in several human populations. In this work, we exploited the high degree (77%) of sequence similarity shared by hCx26 and hCx30 to create atomistic models of homomeric hCx26 and hCx30 connexons starting from the X-ray crystallographic structure of an intercellular channel formed by hCx26 protomers at 3.5-? resolution. The equilibrium dynamics of the two protein complexes was followed for 40 ns each by Molecular Dynamics (MD) simulations. Our results indicate that, in hCx26, positively charged Lys41 residues establish a potential barrier within the fully open channel, hindering ion diffusion in the absence of an electrochemical gradient. A similar role is played, in hCx30, by negatively charged Glu49 residues. The different position and charge of these two ion sieves account for the differences in unitary conductance observed experimentally. Our results are discussed in terms of present models of voltage gating in connexin channels.  相似文献   

2.
Locke D  Liu J  Harris AL 《Biochemistry》2005,44(39):13027-13042
Cell extraction with cold nonionic detergents or alkaline carbonate prepares an insoluble membrane fraction whose buoyant density permits its flotation in discontinuous sucrose gradients. These lipid "rafts" are implicated in protein sorting and are attractive candidates as platforms that coordinate signal transduction pathways with intracellular substrates. Gap junctions form a direct molecular signaling pathway by end-to-end apposition of hemichannels containing one (homomeric) or more (heteromeric) connexin isoforms. Residency of channels composed of Cx26 and/or Cx32 in lipid rafts was assessed by membrane insolubility in alkaline carbonate or different concentrations of Triton X100, Nonidet P40 and Brij-58 nonionic detergents. Using Triton X100, insoluble raft membranes contained homomeric Cx32 channels, but Cx26-containing channels only when low detergent concentrations were used. Results were similar using Nonidet P40, except that Cx26-containing channels were excluded from raft membranes at all detergent concentrations. In contrast, homomeric Cx26 channels were enriched within Brij-58-insoluble rafts, whereas Cx32-containing channels partitioned between raft and nonraft membranes. Immunofluorescence microscopy showed prominent colocalization only of nonjunctional connexin channels with raft plasma membrane; junctional plaques were not lipid rafts. Rafts prepared by different extraction methods had considerable quantitative and qualitative differences in their lipid compositions. That functionally different nonjunctional connexin channels partition among rafts with distinct lipid compositions suggests that unpaired Cx26 and/or Cx32 channels exist in membrane domains of slightly different physicochemical character. Rafts may be involved in trafficking of plasma membrane connexin channels to gap junctions.  相似文献   

3.
In dog thyroid slices prelabeled with myo-[2-3H]inositol, carbachol (10(-7)-10(-4) M) and NaF (10-20 mM) stimulated IP1, IP2 and IP3 generation. These effects did not require the presence of extracellular calcium. Atropine and PDBu inhibited the action of the cholinergic agonist. No effect of TSH (1-100 mU/ml) could be detected on PIP2 hydrolysis and IP production. These results suggest that IP3 could play a role in the metabolic actions of carbachol in the thyroid; a G-protein coupling the hormone-receptor binding to phospholipase C activation exists in the thyroid membrane; the well known TSH-induced increased PI turnover does not result in IP3 accumulation.  相似文献   

4.
Human T lymphocytes stimulated with phytohaemagglutinin undergo a single round of cell division. Further proliferation is dependent on the lymphokine interleukin-2 (IL2) [(1987) Immunology 60, 7-12]. We show here that binding of IL2 to its receptors on the lymphocyte surface triggers the generation of cyclic AMP. In contrast, generation of inositol phosphates from the breakdown of inositol lipids was not detected. We suggest that cyclic AMP may play a role in the transduction of the IL2 proliferative signal in T lymphocytes.  相似文献   

5.
In the eye lens, three connexins have been detected in epithelial cells and bow region/differentiating fiber cells, suggesting the possible formation of heteromeric gap junction channels. To study possible interactions between Cx56 and Cx43, we stably transfected a normal rat kidney cell line (NRK) that expresses Cx43 with Cx56 (NRK-Cx56). Similar to the lens, several bands of Cx56 corresponding to phosphorylated forms were detected by immunoblotting in NRK-Cx56 cells. Immunofluorescence studies showed co-localization of Cx56 with Cx43 in the perinuclear region and at appositional membranes. Connexin hexamers in NRK-Cx56 cells contained both Cx43 and Cx56 as demonstrated by sedimentation through sucrose gradients. Immunoprecipitation of Cx56 from sucrose gradient fractions resulted in co-precipitation of Cx43 from NRK-Cx56 cells suggesting the presence of relatively stable interactions between the two connexins. Double whole-cell patch-clamp experiments showed that the voltage-dependence of Gmin in NRK-Cx56 cells differed from that in NRK cells. Moreover, stable interactions between Cx43 and Cx56 were also demonstrated in the embryonic chicken lens by co-precipitation of Cx43 in Cx56 immunoprecipitates. These data suggest that Cx43 and Cx56 form heteromeric connexons in NRK-Cx56 cells as well as in the lens in vivo leading to differences in channel properties which might contribute to the variations in gap junctional intercellular communication observed in different regions of the lens.  相似文献   

6.
Bestrophin-1 (Best1) is a Cl(-) channel that is linked to various retinopathies in both humans and dogs. Dysfunction of the Best1 Cl(-) channel has been proposed to cause retinopathy because of altered Cl(-) transport across the retinal pigment epithelium (RPE). In addition to Cl(-), many Cl(-) channels also transport HCO3(-). Because HCO3(-) is physiologically important in pH regulation and in fluid and ion transport across the RPE, we measured the permeability and conductance of bestrophins to HCO3(-) relative to Cl(-). Four human bestrophin homologs (hBest1, hBest2, hBest3, and hBest4) and mouse Best2 (mBest2) were expressed in HEK cells, and the relative HCO3(-) permeability (P HCO3/PCl) and conductance (G HCO3/GCl) were determined. P HCO3/PCl was calculated from the change in reversal potential (Erev) produced by replacing extracellular Cl(-) with HCO3(-). hBest1 was highly permeable to HCO3(-) (P HCO3)/PCl = approximately 0.44). hBest2, hBest4, and mBest2 had an even higher relative HCO3(-) permeability (P HCO3/PCl = 0.6-0.7). All four bestrophins had HCO3(-) conductances that were nearly the same as Cl(-) (G HCO3/GCl = 0.9-1.1). Extracellular Na+ did not affect the permeation of hBest1 to HCO3(-). At physiological HCO3(-) concentration, HCO3(-) was also highly conductive. The hBest1 disease-causing mutations Y85H, R92C, and W93C abolished both Cl(-) and HCO3(-) currents equally. The V78C mutation changed P HCO3/PCl and G HCO3/GCl of mBest2 channels. These results raise the possibility that disease-causing mutations in hBest1 produce disease by altering HCO3(-) homeostasis as well as Cl(-) transport in the retina.  相似文献   

7.
8.
Binding of biological phosphate compounds to actin was investigated by the effect of these compounds on the critical concentration of the pointed ends of gelsolin-capped actin filaments. According to this assay millimolar concentrations of glucose 6-phosphate and the bisphosphorylated sugars fructose 1,6-bisphosphate, fructose 2,6-bisphosphate, glucose 1,6-bisphosphate, sedoheptulose 1,7-bisphosphate and 2,3-bisphosphoglycerate were found to associate with actin. Glycerophosphoinositol phosphates bound to actin if they were present in millimolar concentrations, and if carbon atom 4 of the inositol ring was phosphorylated and carbon atom 5 was free of phosphate. Also phosphoserine and phosphotyrosine were found to interact with actin. Most of the actin-binding compounds stabilized actin filaments by decreasing the critical concentration suggesting that these compounds had a higher affinity for the subunits along actin filaments than for actin monomers. However, 2,3-bisphosphoglycerate and fructose 2,6-bisphosphate increased the critical concentration probably because these sugar phosphates bound to actin monomers thereby inhibiting actin polymerization.  相似文献   

9.
Binding of inositol phosphates to arrestin.   总被引:7,自引:0,他引:7  
Arrestin binds to phosphorylated rhodopsin in its light-activated form (metarhodopsin II), blocking thereby its interaction with the G-protein, transducin. In this study, we show that highly phosphorylated forms of inositol compete against the arrestin-rhodopsin interaction. Competition curves and direct binding assays with free arrestin consistently yield affinities in the micromolar range; for example, inositol 1,3,4,5-tetrakisphosphate (InP4) and inositol hexakisphosphate (InP6 bind to arrestin with dissociation constants of 12 microM and 5 microM, respectively. Only a small control amount of inositol phosphates is bound, when arrestin interacts with phosphorylated rhodopsin. This argues for a release of bound inositol phosphates by interaction with rhodopsin. Transducin, rhodopsin kinase, or cyclic GMP phosphodiesterase are not affected by inositol phosphates. These observations open a new way to purify arrestin and to inhibit its interaction with rhodopsin. Their physiological significance deserves further investigation.  相似文献   

10.
During apoptosis, cytochrome c is released from mitochondria into the cytosol, where it participates in caspase activation. Various and often conflicting mechanisms have been proposed to account for the increased permeability of the mitochondrial outer membrane that is responsible for this process. The voltage-dependent anion channel (VDAC) is the major permeability pathway for metabolites in the mitochondrial outer membrane and therefore is a very attractive candidate for cytochrome c translocation. Here, we report that properties of VDAC channels reconstituted into planar phospholipid membranes are unaffected by addition of the pro-apoptotic protein Bax under a variety of conditions. Contrary to other reports (Shimizu, S., Narita, M., and Tsujimoto, Y. (1999) Nature 399, 483-487; Shimizu, S., Ide, T., Yanagida, T., and Tsujimoto, Y. (2000) J. Biol. Chem. 275, 12321-12325; Shimizu, S., Konishi, A., Kodama, T., and Tsujimoto, Y. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 3100-3105), we found no electrophysiologically detectable interaction between VDAC channels isolated from mammalian mitochondria and either monomeric or oligomeric forms of Bax. We conclude that Bax does not induce cytochrome c release by acting on VDAC. In contrast to Bax, another pro-apoptotic protein (Bid) proteolytically cleaved with caspase-8 affected the voltage gating of VDAC by inducing channel closure. We speculate that by decreasing the probability of VDAC opening, Bid reduces metabolite exchange between mitochondria and the cytosol, leading to mitochondrial dysfunction.  相似文献   

11.
Effects of basolateral monovalent cation replacements(Na+ byLi+,K+,Cs+, methylammonium, andguanidinium) on permeability to86Rb of volume-sensitive cationchannels (VSCC) in the basolateral membrane and on regulatory volumedecrease (RVD), elicited by a hyposmotic shock, were studied in A6epithelia in the absence of apicalNa+ uptake. A complete and quickRVD occurred only when the cells were perfused withNa+ orLi+ saline. With both cations,hypotonicity increased basolateral 86Rb release(RblRb), which reached a maximum after 15 min and declined back to control level. When the major cation wasK+,Cs+, methylammonium, orguanidinium, the RVD was abolished. Methylammonium induced a biphasictime course of cell thickness(Tc), with an initial decline ofTc followed by a gradual increase.With K+,Cs+, or guanidinium,Tc increased monotonously afterthe rapid initial rise evoked by the hypotonic challenge. In thepresence of K+,Cs+, or methylammonium,RblRb remained high during most of thehypotonic period, whereas with guanidinium blockage of RblRb was initiated after 6 min ofhypotonicity, suggesting an intracellular location of the site ofaction. With all cations, 0.5 mM basolateralGd3+ completely blocked RVD andfully abolished the RblRb increaseinduced by the hypotonic shock. The lanthanide also blocked theadditional volume increase induced byCs+,K+, guanidinium, ormethylammonium. When pH was lowered from 7.4 to 6.0, RVD andRblRb were markedly inhibited. This studydemonstrates that the VSCCs in the basolateral membrane of A6 cells arepermeable to K+,Rb+,Cs+, methylammonium, andguanidinium, whereas a marked inhibitory effect is exerted byGd3+, protons, and possiblyintracellular guanidinium.

  相似文献   

12.
13.
Even though the majority of knowledge about phospholipids comes from their cytoplasmic functions, in the last decade, it has been shown that nuclear phospholipids and their building blocks, inositol phosphates, have many important roles in the cell nucleus. There are clear connections of phospholipids with the regulation of gene expression and chromatin biology, however, this review focuses on less known functions of nuclear phospholipids in connection with the epigenome regulation. In particular, we highlight the roles of nuclear phospholipids and inositol phosphates that involve histone modifications, such as acetylation or methylation, tightly connected with the cell physiology. This demonstrates the importance of nuclear phospholipids in the regulation of cellular processes, and should encourage further research of nuclear phospholipids and inositol phosphates.  相似文献   

14.
Xue L  Zhang Z  McNeil BD  Luo F  Wu XS  Sheng J  Shin W  Wu LG 《Cell reports》2012,1(6):632-638
Although calcium influx triggers endocytosis at many synapses and non-neuronal secretory cells, the identity of the calcium channel is unclear. The plasma membrane voltage-dependent calcium channel (VDCC) is a candidate, and it was recently proposed that exocytosis transiently inserts vesicular calcium channels at the plasma membrane, thus triggering endocytosis and coupling it to exocytosis, a mechanism suggested to be conserved from sea urchin to human. Here, we report that the vesicular membrane, when inserted into the plasma membrane upon exocytosis, does not generate a calcium current or calcium increase at a mammalian nerve terminal. Instead, VDCCs at the plasma membrane, including the P/Q-type, provide the calcium influx to trigger rapid and slow endocytosis and, thus, couple endocytosis to exocytosis. These findings call for reconsideration of the vesicular calcium channel hypothesis. They are likely to apply to many synapses and non-neuronal cells in which VDCCs control exocytosis, and exocytosis is coupled to endocytosis.  相似文献   

15.
Cx45 channel sensitivity to CO(2), transjunctional voltage (V(j)) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage-clamp. Cx45 channels are very sensitive to V(j) and close preferentially by the slow gate, likely the same as the chemical gate. With CO(2)-induced drop in junctional conductance (G(j)), the speed of V(j)-dependent inactivation of junctional current (I(j)) and V(j) sensitivity increased. With 40 mV V(j), the tau of single exponential I(j) decay reversibly decreased by approximately 40% with CO(2), and G(j steady state)/G(j peak) decreased multiphasically, indicating that kinetics and V(j) sensitivity of chemical/slow-V(j) gating are altered by changes in [H(+)](i) and/or [Ca(2+)](i). With 15 min exposure to CO(2), G(j) dropped to 0% in controls and by approximately 17% following CaM expression inhibition; similarly, V(j) sensitivity decreased significantly. This indicates that the speed and sensitivity of V(j)-dependent inactivation of Cx45 channels are increased by CO(2), and that CaM plays a role in gating. Cx32 channels behaved similarly, but the drop in both G(j steady state)/G(j peak) and tau with CO(2) matched more closely that of G(j peak). In contrast, sensitivity and speed of V(j) gating of Cx40 and Cx26 channels decreased, rather than increased, with CO(2) application.  相似文献   

16.
We have previously reported that insulin increases the synthesis de novo of phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) in BC3H-1 myocytes and/or rat adipose tissue. Here we have further characterized these effects of insulin and examined whether there are concomitant changes in inositol phosphate generation and Ca2+ mobilization. We found that insulin provoked very rapid increases in PI content (20% within 15 s in myocytes) and, after a slight lag, PIP and PIP2 content in both BC3H-1 myocytes and rat fat pads (measured by increases in 32P or 3H content after prelabelling phospholipids to constant specific radioactivity by prior incubation with 32Pi or [3H]inositol). Insulin also increased 32Pi incorporation into these phospholipids when 32Pi was added either simultaneously with insulin or 1 h after insulin. Thus, the insulin-induced increase in phospholipid content appeared to be due to an increase in phospholipid synthesis, which was maintained for at least 2 h. Insulin increased DAG content in BC3H-1 myocytes and adipose tissue, but failed to increase the levels of inositol monophosphate (IP), inositol bisphosphate (IP2) or inositol trisphosphate (IP3). The failure to observe an increase in IP3 (a postulated 'second messenger' which mobilizes intracellular Ca2+) was paralleled by a failure to observe an insulin-induced increase in the cytosolic concentration of Ca2+ in BC3H-1 myocytes as measured by Quin 2 fluorescence. Like insulin, the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) increased the transport of 2-deoxyglucose and aminoisobutyric acid in BC3H-1 myocytes. These effects of insulin and TPA appeared to be independent of extracellular Ca2+. We conclude that the phospholipid synthesis de novo effect of insulin is provoked very rapidly, and is attended by increases in DAG but not IP3 or Ca2+ mobilization. The insulin-induced increase in DAG does not appear to be a consequence of phospholipase C acting upon the expanded PI + PIP + PIP2 pool, but may be derived directly from PA. Our findings suggest the possibility that DAG (through protein kinase C activation) may function as an important intracellular 'messenger' for controlling metabolic processes during insulin action.  相似文献   

17.
Y Oosawa 《Biophysical journal》1989,56(6):1217-1223
The cation-selective channel from Tetrahymena cilia is permeable to both monovalent and divalent cations. The single channel conductance in mixed solutions of K+ and Ca2+ was determined by the Gibbs-Donnan ratio of K+ and Ca2+, and the binding sites of this channel were considered to be always occupied by two potassium ions or by one calcium ion under the experimental conditions: 5-90 mM K+ and 0.5-35 mM Ca2+ (Oosawa and Kasai, 1988). A two-barrier model for the channel was introduced and the values of Michaelis-Menten constants and maximum currents carried by K+ and Ca2+ were calculated using this model. Single channel current amplitudes and reversal potentials were calculated from these values. The calculated single-channel currents were compared with those obtained experimentally. The calculated reversal potentials were compared with the resting potentials of Tetrahymena measured in various concentrations of extracellular K+ and Ca2+. The method of calculation of ionic currents and reversal potentials presented here is helpful for understanding the properties of the channels permeable to both monovalent and divalent cations.  相似文献   

18.
19.
ABSTRACT: BACKGROUND: The evolution and genomic stop codon frequencies have not been rigorously studied with the exception of coding of non-canonical amino acids. Here we study the rate of evolution and frequency distribution of stop codons in bacterial genomes. RESULTS: We show that in bacteria stop codons evolve slower than synonymous sites, suggesting the action of weak negative selection. However, the frequency of stop codons relative to genomic nucleotide content indicated that this selection regime is not straightforward. The frequency of TAA and TGA stop codons is GC-content dependent, with TAA decreasing and TGA increasing with GC-content, while TAG frequency is independent of GC-content. Applying a formal, analytical model to these data we found that the relationship between stop codon frequencies and nucleotide content cannot be explained by mutational biases or selection on nucleotide content. However, with weak nucleotide content-dependent selection on TAG, -0.5 < Nes < 1.5, the model fits all of the data and recapitulates the relationship between TAG and nucleotide content. For biologically plausible rates of mutations we show that, in bacteria, TAG stop codon is universally associated with lower fitness, with TAA being the optimal for G-content < 16% while for G-content > 16% TGA has a higher fitness than TAG. CONCLUSIONS: Our data indicate that TAG codon is universally suboptimal in the bacterial lineage, such that TAA is likely to be the preferred stop codon for low GC content while the TGA is the preferred stop codon for high GC content. The optimization of stop codon usage may therefore be useful in genome engineering or gene expression optimization applications.ReviewersThis article was reviewed by Michail Gelfand, Arcady Mushegian and Shamil Sunyaev. For the full reviews, please go to the Reviewers' Comments section.  相似文献   

20.
The nonhomologous DNA end joining (NHEJ) pathway is responsible for repairing a major fraction of double strand DNA breaks in somatic cells of all multicellular eukaryotes. As an indispensable protein in the NHEJ pathway, Ku has been hypothesized to be the first protein to bind at the DNA ends generated at a double strand break being repaired by this pathway. When bound to a DNA end, Ku improves the affinity of another DNA end-binding protein, DNA-PK(cs), to that end. The Ku.DNA-PK(cs) complex is often termed the DNA-PK holoenzyme. It was recently shown that myo-inositol hexakisphosphate (IP(6)) stimulates the joining of complementary DNA ends in a cell free system. Moreover, the binding data suggested that IP(6) bound to DNA-PK(cs) (not to Ku). Here we clearly show that, in fact, IP(6) associates not with DNA-PK(cs), but rather with Ku. Furthermore, the binding of DNA ends and IP(6) to Ku are independent of each other. The possible relationship between inositol phosphate metabolism and DNA repair is discussed in light of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号