首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The cellulose synthase and cellulose synthase-like gene superfamily (CESA/CSL) is proposed to encode enzymes for cellulose and non-cellulosic matrix polysaccharide synthesis in plants. Although the rice (Oryza sativa L.) genome has been sequenced for a few years, the global expression profiling patterns and functions of the OsCESA/CSL superfamily remain largely unknown.  相似文献   

2.
With the discovery of targeted gene replacement, moss biology has been rapidly advancing over the last 10 years. This study demonstrates the usefulness of moss as a model organism for plant photosynthesis research. The two mosses examined in this study, Physcomitrella patens and Ceratodon purpureus, are easily cultured through vegetative propagation. Growth tests were conducted to determine carbon sources suitable for maintaining heterotrophic growth while photosynthesis was blocked. Photosynthetic parameters examined in these plants indicated that the photosynthetic activity of Ceratodon and Physcomitrella is more similar to vascular plants than cyanobacteria or green algae. Ceratodon plants grown heterotrophically appeared etiolated in that the plants were taller and plastids did not differentiate thylakoid membranes. After returning to the light, the plants developed green, photosynthetically active chloroplasts. Furthermore, UV-induced mutagenesis was used to show that photosynthesis-deficient mutant Ceratodon plants could be obtained. After screening approximately 1000 plants, we obtained a number of mutants, which could be arranged into the following categories: high fluorescence, low fluorescence, fast and slow fluorescence quenching, and fast and slow greening. Our results indicate that in vivo biophysical analysis of photosynthetic activity in the mosses can be carried out which makes both mosses useful for photosynthesis studies, and Ceratodon best sustains perturbations in photosynthetic activity.  相似文献   

3.
The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, very little is known about the defense mechanisms activated in this moss after pathogen assault. In this study, we show that P. patens activated multiple and similar responses against Pythium irregulare and Pythium debaryanum, including the reinforcement of the cell wall, induction of the defense genes CHS, LOX and PAL, and accumulation of the signaling molecules jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (OPDA). However, theses responses were not sufficient and infection could not be prevented leading to hyphae colonization of moss tissues and plant decay. Pythium infection induced reactive oxygen species production and caused cell death of moss tissues. Taken together, these data indicate that Pythium infection activates in P. patens common responses to those previously characterized in flowering plants. Microscopic analysis also revealed intracellular relocation of chloroplasts in Pythium-infected tissues toward the infection site. In addition, OPDA, JA and its methyl ester methyl jasmonate induced the expression of PAL. Our results show for the first time JA and OPDA accumulation in a moss and suggest that this defense pathway is functional and has been maintained during the evolution of plants. Authors Juan Pablo Oliver and Alexandra Castro contributed equally to this work.  相似文献   

4.
Enzymes of the chalcone synthase (CHS) superfamily catalyze the production of a variety of secondary metabolites in bacteria, fungi and plants. Some of these metabolites have played important roles during the early evolution of land plants by providing protection from various environmental assaults including UV irradiation. The genome of the moss, Physcomitrella patens, contains at least 17 putative CHS superfamily genes. Three of these genes (PpCHS2b, PpCHS3 and PpCHS5) exist in multiple copies and all have corresponding ESTs. PpCHS11 and probably also PpCHS9 encode non-CHS enzymes, while PpCHS10 appears to be an ortholog of plant genes encoding anther-specific CHS-like enzymes. It was inferred from the genomic locations of genes comprising it that the moss CHS superfamily expanded through tandem and segmental duplication events. Inferred exon–intron architectures and results from phylogenetic analysis of representative CHS superfamily genes of P. patens and other plants showed that intron gain and loss occurred several times during evolution of this gene superfamily. A high proportion of P. patens CHS genes (7 of 14 genes for which the full sequence is known and probably 3 additional genes) are intronless, prompting speculation that CHS gene duplication via retrotransposition has occurred at least twice in the moss lineage. Analyses of sequence similarities, catalytic motifs and EST data indicated that a surprisingly large number (as many as 13) of the moss CHS superfamily genes probably encode active CHS. EST distribution data and different light responsiveness observed with selected genes provide evidence for their differential regulation. Observed diversity within the moss CHS superfamily and amenability to gene manipulation make Physcomitrella a highly suitable model system for studying expansion and functional diversification of the plant CHS superfamily of genes.  相似文献   

5.
The pleurocarpus feather moss, Hylocomium splendens, is one of two co-dominant moss species in boreal forest ecosystems and one of the most common mosses on earth, yet little is known regarding its capacity to host cyanobacterial associates and thus contribute total ecosystem N. In these studies, we evaluated the N-fixation potential of the H. splendens–cyanobacteria association and contrasted the N-fixation activity with that of the putative N-fixing moss–cyanobacteria association of Pleurozium schreberi. Studies were conducted to: quantify N-fixation in H. splendens and P. schreberi in sites ranging from southern to northern Fennoscandia; assess N and P availability as drivers of N-fixation rates; contrast season-long N-fixation rates for both mosses; and characterize the cyanobacteria that colonize shoots of H. splendens. Nitrogen-fixation rates were generally low at southern latitudes and higher at northern latitudes (64–69°N) potentially related to anthropogenic N deposition across this gradient. Nitrogen fixation in H. splendens appeared to be less sensitive to N deposition than P. schreberi. The season-long assessment of N-fixation rates at a mixed feather moss site in northern Sweden showed that H. splendens fixed a substantial quantity of N, but about 50% less total N compared to the contribution from P. schreberi. In total, both species provided 1.6 kg fixed N ha−1 year−1. Interestingly, H. splendens demonstrated somewhat higher N-fixation rates at high fertility sites compared to P. schreberi. Nostoc spp. and Stigonema spp. were the primary cyanobacteria found to colonize H. splendens and P. schreberi. These results suggest that H. splendens with associated Nostoc or Stigonema communities contributes a significant quantity of N to boreal forest ecosystems, but the contribution is subordinate to that of P. schreberi at northern latitudes. Epiphytic cyanobacteria are likely a key factor determining the co-dominant presence of these two feather mosses across the boreal biome.  相似文献   

6.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.  相似文献   

7.
The cellulose synthase-like (ZmCSL) gene family of maize was annotated and its expression studied in the maize mesocotyl. A total of 28 full-length CSL genes and another 13 partial sequences were annotated; four are predicted to be pseudogenes. Maize has all of the CSL subfamilies that are present in rice, but the CSLC subfamily is expanded from 6 in rice to 12 in maize, and the CSLH subfamily might be reduced from 3 to 1. Unlike rice, maize has a gene in the CSLG subfamily, based on its sequence similarity to two genes annotated as CSLG in poplar. Light regulation of glycan synthase enzyme activities and CSL gene expression were analyzed in the mesocotyl. A Golgi-localized glucan synthase activity is reduced by ~50% 12 h after exposure to light. β-1,4-Mannan synthase activity is reduced even more strongly (>85%), whereas β-1,4-xylan synthase, callose synthase, and latent IDPase activity respond only slightly, if at all, to light. At least 17 of the CSL genes (42%) are expressed in the mesocotyl, of which four are up-regulated at least twofold, seven are down-regulated at least twofold, and six are not affected by light. The results contribute to our understanding of the structure of the CSL gene family in an important food and biofuel plant, show that a large percentage of the CSL genes are expressed in the specialized tissues of the mesocotyl, and demonstrate that members of the CSL gene family are differentially subject to photobiological regulation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in plants. Linking upstream MAPK kinase kinase (MAPKKK) to downstream MAPK, MAPK kinase (MAPKK) plays a crucial role in MAPK cascade. MAPKK6 is one member of the MAPKK family. In this study, we have found that plant MAPKK6 genes are widely distributed in different plant species, including moss, seedless vascular plants, gymnosperms, and angiosperms. However, no MAPKK6 can be found in genomes of algae. Analysis of exon–intron organization and intron phase showed that plant MAPKK6s are highly conserved genes during plant evolution. In Physcomitrella patens, Selaginella moellendorffii, and Picea glauca, MAPKK6s exist as multicopy genes. In most high plants, however, MAPKK6s exist as single-copy. Phylogenetic analysis indicated that the occurrence of single-copy of MAPKK6s in high plants is likely because of genomic copy-number loss.  相似文献   

9.
Fu H  Yadav MP  Nothnagel EA 《Planta》2007,226(6):1511-1524
A biochemical investigation of arabinogalactan proteins (AGPs) in Physcomitrella patens was undertaken with particular emphasis on the glycan chains. Following homogenization and differential centrifugation of moss gametophytes, AGPs were obtained by Yariv phenylglycoside-induced precipitation from the soluble, microsomal membrane, and cell wall fractions. Crossed-electrophoresis indicated that each of these three AGP fractions was a mixture of several AGPs. The soluble AGP fraction was selected for further separation by anion-exchange and gel-permeation chromatography. The latter indicated molecular masses of ∼100 and 224 kDa for the two major soluble AGP subfractions. The AGPs in both of these subfractions contained the abundant (1,3,6)-linked galactopyranosyl residues, terminal arabinofuranosyl residues, and (1,4)-linked glucuronopyranosyl residues that are typical of many angiosperm AGPs. Unexpectedly, however, the moss AGP glycan chains contained about 15 mol% terminal 3-O-methyl-l-rhamnosyl residues, which have not been found in angiosperm AGPs. This unusual and relatively nonpolar sugar, also called l-acofriose, is likely to have considerable effects on the overall polarity of Physcomitrella AGPs. A review of the literature indicates that the capacity to synthesize polymers containing 3-O-methyl-l-rhamnosyl residues is present in a variety of bacteria, algae and lower land plants but became less common through evolution to the extent that this sugar has been found in only a few species of angiosperms where it occurs as a single residue on steroidal glycosides.  相似文献   

10.
Drew DP  Lunde C  Lahnstein J  Fincher GB 《Planta》2007,225(4):945-954
Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) catalyses the reduction of the monodehydroascorbate (MDHA) radical to ascorbate, using NADH or NADPH as an electron donor, and is believed to be involved in maintaining the reactive oxygen scavenging capability of plant cells. This key enzyme in the ascorbate-glutathione cycle has been studied here in the moss Physcomitrella patens, which is tolerant to a range of abiotic stresses and is increasingly used as a model plant. In the present study, three cDNAs encoding different MDHAR isoforms of 47 kDa were identified in P. patens, and found to exhibit enzymic characteristics similar to MDHARs in vascular plants despite low-sequence identity and a distant evolutionary relationship between the species. The three cDNAs for the P. patens MDHAR enzymes were expressed in Escherichia coli and the active enzymes were purified and characterized. Each recombinant protein displayed an absorbance spectrum typical of flavoenzymes and contained a single non-covalently bound FAD coenzyme molecule. The K m and k cat values for the heterologously expressed PpMDHAR enzymes ranged from 8 to 18 μM and 120–130 s−1, respectively, using NADH as the electron donor. The K m values were at least an order of magnitude higher for NADPH. The K m values for the MDHA radical were ∼0.5–1.0 μM for each of the purified enzymes, and further kinetic analyses indicated that PpMDHARs follow a ‘ping–pong’ kinetic mechanism. In contrast to previously published data, site-directed mutagenesis indicated that the conserved cysteine residue is not directly involved in the reduction of MDHA.  相似文献   

11.
Humulus japonicus in communities of Miscanthus sacchariflorus and Phragmites australis can grow large enough to overtop other species in the Amsa-dong floodplain. Because of strong winds and the weight of Humulus, plants of M. sacchariflorus and P. australis fell in mid-August and were subject to decomposition under its dense shading. To assess the effects of H. japonicus on nutrient cycling in these communities, we collected fresh samples of M. sacchariflorus and P. australis in litterbags and decomposed them under H. japonicus for 9 months, beginning in August. Biomass and organic contents from M. sacchariflorus during this incubation period were 49–51% and 44–48%, whereas those of P. australis were 49–61% and 32–52%, respectively. Their annual k values were 1.61–1.74 and 1.46–3.54, respectively. Initial N concentrations in M. sacchariflorus and P. australis were 13 and 20 mg g−1, while C:N ratios were 31 and 21, respectively. These results indicate that H. japonicus is responsible for the collapse of M. sacchariflorus and P. australis in August and also accelerates their nutrient cycling through rapid decomposition, thereby increasing nutrient circulation in floodplains.  相似文献   

12.
Two albino mutants (ab1 and ab2) have been derived from long-term shoot proliferation of Bambusa edulis. Based on transmission electronic microscopy data, the chloroplasts of these mutants were abnormal. To study the mutation of gene regulation in the aberrant chloroplasts, we designed 19 pairs of chloroplast-encoded gene primers for genomic and RT-PCR. Only putative NAD(P)H-quinone oxidoreductase chain 4L (ndhE; DQ908943) and ribosomal protein S7 (rps7; DQ908931) were conserved in both the mutant and wild-type plants. The deletions in the chloroplast genome of these two mutants were different: nine genes were deleted in the chloroplast genomic aberration in ab1 and 11 genes in ab2. The chloroplast genes, NAD(P)H-quinone oxidoreductase chain 4 (ndhD; DQ908944), chloroplast 50S ribosomal protein L14 (rpl14; DQ908934), and ATP synthase beta chain (atpB; DQ908948) were abnormal in both mutants. The gene expressions of 18 of these 20 genes were correlated with their DNA copy number. The two exceptions were: ATP synthase CF0 A chain (atpI; DQ908946), whose expression in both mutants was not reduced even though the copy number was reduced; ribosomal protein S19 (rps19; DQ908949), whose expression was reduced or it was not expressed at all even though there was no difference in genomic copy number between the wild-type and mutant plants. The genomic PCR results showed that chloroplast genome aberrations do occur in multiple shoot proliferation, and this phenomenon may be involved in the generation of albino mutants.  相似文献   

13.
The present work is directed at studying changes at the proteome level in Arabidopsis thaliana leaves in response to Pseudomonas syringae virulent (Pst) and avirulent (Pst avrRpt2) strains. Arabidopsis leaves were sampled from challenged plants at 4, 8 and 24 h post inoculation. Proteins were TCA–acetone–phenol extracted and subjected to 2-DE (5–8 pH range) and MS/MS (MALDI–TOF–TOF) analysis. Out of 800 matched spots on each of the 36 gels analysed, 147 spots were either absent in at least one of the conditions studied (time or treatments; qualitative variable spots) or differentially accumulated between time and treatments (quantitative variable spots). Out of the 24 proteins successfully identified over TAIR10 database, 23 have not been reported previously in similar proteomics studies of the Arabidopsis thalianaPseudomonas syringae interaction. The exhaustive statistical analysis performed, including principal component and heat map, showed that 24 h post inoculation can clearly discriminate the challenged plants from the control. The protein change occurred early (4 h post inoculation) following the virulent pathogen infection, whereas the change occurred later (24 h post inoculation) following the avirulent pathogen inoculation. Concerning the variable proteins, three behavioural groups can be observed: group 1 (common protein changes in response to virulent and avirulent pathogen infection), group 2 (protein changes in response to virulent pathogen infection) and group 3 (protein changes in response to avirulent pathogen infection). Differential identified proteins following the pathogen infection belonged to different groups including those of oxidative stress defence, enzymes of metabolic pathways and molecular chaperones.  相似文献   

14.
Land plants possess some of the most unusual mitochondrial genomes among eukaryotes. However, in early land plants these genomes resemble those of green and red algae or early eukaryotes. The question of when during land plant evolution the dramatic change in mtDNAs occurred remains unanswered. Here we report the first completely sequenced mitochondrial genome of the hornwort, Megaceros aenigmaticus, a member of the sister group of vascular plants. It is a circular molecule of 184,908 base pairs, with 32 protein genes, 3 rRNA genes, 17 tRNA genes, and 30 group II introns. The genome contains many genes arranged in the same order as in those of a liverwort, a moss, several green and red algae, and Reclinomonas americana, an early-branching eukaryote with the most ancestral form of mtDNA. In particular, the gene order between mtDNAs of the hornwort and Physcomitrella patens (moss) differs by only 8 inversions and translocations. However, the hornwort mtDNA possesses 4 derived features relative to green alga mtDNAs—increased genome size, RNA editing, intron gains, and gene losses—which were all likely acquired during the origin and early evolution of land plants. Overall, this genome and those of other 2 bryophytes show that mitochondrial genomes in early land plants, unlike their seed plant counterparts, exhibit a mixed mode of conservative yet dynamic evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Libo Li and Bin Wang contributed equally to this work.  相似文献   

15.
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Plants were harvested after 120 days of salt-treatment. The present study was designed to study the effect of salinity on root, stem and leaf anatomy, water relationship, and plant growth in greenhouse conditions. Salinity induced anatomical changes in the roots, stems and leaves. The cuticle and epidermis of N. retusa and A. halimus stems were unaffected by salinity. However, root anatomical parameters (root cross section area, cortex thickness and stele to root area ratio), and stem anatomical parameters (stem cross section area and cortex area) were promoted at 100–200 mM NaCl. Indicating that low to moderate salinity had a stimulating effect on root and stem growth of these xero-halophytic species. At higher salinities, root and stem structures were altered significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea, they were strongly altered as salinity rose. NaCl (100–300 mM) reduced leaf water content by 21.2–56.2% and specific leaf area by 51–88.1%, while increased leaf anatomical parameters in M. arborea (e.g. increased thickness of upper and lower epidermis, palisade and spongy mesophyll, entire lamina, and increased palisade to spongy mesophyll ratio). Similar results were evidenced in A. halimus leaves with salinity exceeding 100 mM NaCl. Leaves of N. retusa were thinner in salt-stressed plants while epidermis thickness and water content was unaffected by salinity. The size of xylem vessel was unchanged under salinity in the leaf’s main vein of the three species while we have increased number in M. arborea leaf main vein in the range of 200–300 mM NaCl. A longer distance between leaf vascular bundle, a reduced size and increased number of xylem vessel especially in stem than in root vascular system was evidenced in M. arborea treated plants and only at (400–800 mM) in the xero-halophytic species. The effects of NaCl toxicity on leaf, stem and root ultrastructure are discussed in relation to the degree of salt resistance of these three species. Our results suggest that both N. retusa and A. halimus show high tolerance to salinity while M. arborea was considered as a salt tolerant species.  相似文献   

16.
The moss Physcomitrella patens is suitable for systems biology studies, as it can be grown axenically under standardised conditions in plain mineral medium and comprises only few cell types. We report on metabolite profiling of two major P. patens tissues, filamentous protonema and leafy gametophores, from different culture conditions. A total of 96 compounds were detected, 21 of them as yet unknown in public databases. Protonema and gametophores had distinct metabolic profiles, especially with regard to saccharides, sugar derivates, amino acids, lignin precursors and nitrogen-rich storage compounds. A hydroponic culture was established for P. patens, and was used to apply drought stress under physiological conditions. This treatment led to accumulation of osmoprotectants, such as altrose, maltitol, ascorbic acid and proline. Thus, these osmoprotectants are not unique to seed plants but have evolved at an early phase of the colonization of land by plants.  相似文献   

17.
The PROMOTION OF CELL SURVIVAL 1 (PCS1) gene, encoding an aspartic protease, has an important role in determining the fate of cells in embryonic development and reproduction processes in Arabidopsis. To explore the potential function of the PCS1 gene in generating reproductive sterility, we placed the PCS1 gene under the control of an 1,869-bp nucleotide sequence from the 3′ end of the second intron (AG-I) of Arabidopsis AGAMOUS and CaMV 35S (–60) minimal promoter [AG-I-35S (60)::PCS1], and introduced it into tobacco. RT–PCR results demonstrated that the PCS1 gene driven by AG-I-35S (60) chimeric promoter was expressed only in anthers and carpels in the reproductive tissues of transgenic tobacco. Compared to wild-type plants, all AG-I-35S (60) and AG-I-35S (60)::PCS1 transgenic lines showed a normal phenotype throughout the vegetative growth phase. However, during the reproductive stage, most AG-I-35S (60)::PCS1 transgenic plant anthers displayed delayed dehiscence, failed dehiscence, petalody and hypoplasia, and the pollen grains had different shapes and sizes with a distorted, shrunken, or collapsed morphology. Moreover, three transgenic lines, PCS1-1, PCS1-3 and PCS1-4, showed higher sterility than wild-type and AG-I-35S (60) transgenic plants, respectively. These results showed that the construct of AG-I-35S (60)::PCS1 was partially effective at preventing seed set and provided a novel sterility strategy.  相似文献   

18.
Bigtooth maple (Acer grandidentatum) is a promising ornamental tree that is not widely used in managed landscapes. Tissue culture has not been used successfully to propagate this taxon. We cultured single- and double-node explants from greenhouse-grown, 2-y old seedlings of bigtooth maples, which are indigenous to New Mexico, Texas, and Utah, on Murashige–Skoog (MS), Linsmaier–Skoog (LS), Driver–Kuniyuki Walnut (DKW), and Woody Plant (WPM) tissue culture media. Media affected shoot proliferation (P = 0.0242) but the zone of explant origin (P = 0.7594) did not. After four 30-d subcultures, explants on DKW media and WPM media produced 3.6 and 3.5 shoots per explant, respectively. Sprouting rates were highest on DKW, making DKW the best overall media for shoot proliferation. Double-node microshoots were rooted in vitro on DKW containing indole acetic acid (IAA). Microshoots represented six genotypes from three locations within Texas and New Mexico. Rooting percentage increased up to 15% as IAA concentration increased (P = 0.0040). There was 100% survival of rooted microshoots in vented Phytatrays containing one perlite: one peat moss (v/v). We conclude that DKW can be used to proliferate microshoots, and IAA induces rooting in microshoots of bigtooth maple.  相似文献   

19.
To investigate the biocontrol effectiveness of the antibiotic producing bacterium, Pseudomonas aureofaciens 63–28 against the phytopathogen Rhizoctonia solani AG-4 on Petri plates and in soybean roots, growth response and induction of PR-proteins were estimated after inoculation with P. aureofaciens 63–28 (P), with R. solani AG-4 (R), or with P. aureofaciens 63–28 + R. solani AG-4 (P + R). P. aureofaciens 63–28 showed strong antifungal activity against R. solani AG-4 pathogens in Petri plates. Treatment with P. aureofaciens 63–28 alone increased the emergence rate, shoot fresh weight, shoot dry weight and root fresh weight at 7 days after inoculation, when compared to R. solani AG-4; P + R treatment showed similar effects. Peroxidase (POD) and β-1,3-glucanase activity of P. aureofaciens 63–28 treated roots increased by 41.1 and 49.9%, respectively, compared to control roots. POD was 26% greater in P + R treated roots than R. solani treated roots. Two POD isozymes (59 and 27 kDa) were strongly induced in P + R treated roots. The apparent molecular weight of chitinase from treated roots, as determined through SDS-PAGE separation and comparison with standards, was about 29 kDa. Five β-1,3-glucanase isozymes (80, 70, 50, 46 and 19 kDa) were observed in all treatments. These results suggest that inoculation of soybean plants with P. aureofaciens 63–28 elevates plant growth inhibition by R. solani AG-4 and activates PR-proteins, potentially through induction of systemic resistance mechanisms.  相似文献   

20.
An insertion in the promoter of the Arabidopsis thaliana QUA1 gene (qua1-1 allele) leads to a dwarf plant phenotype and a reduction in cell adhesion, particularly between epidermal cells in seedlings and young leaves. This coincides with a reduction in the level of homogalacturonan epitopes and the amount of GalA in isolated cell walls (Bouton et al., Plant Cell 14: 2577 2002). The present study was undertaken in order to investigate further the link between QUA1 and cell wall biosynthesis. We have used rapidly elongating inflorescence stems to compare cell wall biosynthesis in wild type and qua1-1 mutant tissue. Relative to the wild type, homogalacturonan α-1-4-D-galacturonosyltransferase activity was consistently reduced in qua1-1 stems (by about 23% in microsomal and 33% in detergent-solubilized membrane preparations). Activities of β-1-4-D-xylan synthase, β-1-4-D-galactan synthase and β-glucan synthase II activities were also measured in microsomal membranes. Of these, only β-1-4-D-xylan synthase was affected, and was reduced by about 40% in qua1-1 stems relative to wild type. The mutant phenotype was apparent in inflorescence stems, and was investigated in detail using microscopy and cell wall composition analyses. Using in situ PCR techniques, QUA1 mRNA was localized to discrete cells of the vascular tissue and subepidermal layers. In mutant stems, the organization of these tissues was disrupted and there was a modest reduction in homogalacturonan (JIM5) epitopes. This study demonstrates a specific role for QUA1 in the development of vascular tissue in rapidly elongating inflorescence stems and supports a role of QUA1 in pectin and hemicellulose cell wall synthesis through affects on α-1,4-D-galacturonosyltransferase and β-1,4-D-xylan synthase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号