首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.  相似文献   

2.
AIMS: To assess the abilities of 105 avian pathogenic Escherichia coli (APEC) and 103 avian faecal commensal E. coli (AFEC) to form biofilms on a plastic surface and to investigate the possible association of biofilm formation with the phylotype of these isolates. METHODS AND RESULTS: Biofilm production was assessed in 96-well microtitre plates using three different media, namely, M63 minimal medium supplemented with glucose and casamino acids, brain-heart infusion broth, and diluted tryptic soy broth. Avian E. coli are highly variable in their ability to form biofilms. In fact, no strain produced a strong biofilm in all three types of media; however, most (75.7% AFEC and 55.2% APEC) were able to form a moderate or strong biofilm in at least one medium. Biofilm formation in APEC seems to be mostly limited to nutrient deplete media; whereas, AFEC are able to form biofilms in both nutrient deplete and replete media. Also, biofilm formation in E. coli from phylogenetic groups B2, D and B1 was induced by nutrient deplete conditions; whereas, biofilm formation by members of phylogenetic group A was strongest in a rich medium. CONCLUSIONS: Biofilm formation by APEC and phylotypes B2, D and B1 is induced by nutrient deplete conditions, while AFEC are able to form biofilms in both nutrient rich and deplete media. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to investigate biofilm formation by a large sample of avian E. coli isolates, and it provides insight into the conditions that induce biofilm formation in relation to the source (APEC or AFEC) and phylogenetic group (A, B1, B2 and D) of an isolate.  相似文献   

3.
对人尿道致病性大肠杆菌(uropathogenic Escherichia coli,UPEC)HEC4株和禽致病性大肠杆菌(avian pathogen-ic Escherichia coli,APEC)E058株进行毒力基因和其他相关特性的比较,结果显示,它们具有一些共同的毒力基因,包括一些存在于APEC中一个大的可传递质粒上的基因;同时,它们也具有一些相似的生化特性。对SPF鸡的致病性试验显示,这两株分离株具有相似的致病力。因此,对于APEC和UPEC的相关性,以及APEC是否有可能导致人尿道感染或者成为UPEC的毒力基因贮主,有待进一步研究。  相似文献   

4.
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.  相似文献   

5.
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.  相似文献   

6.
Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli causing colibacillosis in birds, is responsible for significant economic losses for the poultry industry. Recently, we reported that the APEC pathotype was characterized by possession of a set of genes contained within a 94-kb cluster linked to a ColV plasmid, pAPEC-O2-ColV. These included sitABCD, genes of the aerobactin operon, hlyF, iss, genes of the salmochelin operon, and the 5' end of cvaB of the ColV operon. However, the results of gene prevalence studies performed among APEC isolates revealed that these traits were not always linked to ColV plasmids. Here, we present the complete sequence of a 174-kb plasmid, pAPEC-O1-ColBM, which contains a putative virulence cluster similar to that of pAPEC-O2-ColV. These two F-type plasmids share remarkable similarity, except that they encode the production of different colicins; pAPEC-O2-ColV contains an intact ColV operon, and pAPEC-O1-ColBM encodes the colicins B and M. Interestingly, remnants of the ColV operon exist in pAPEC-O1-ColBM, hinting that ColBM-type plasmids may have evolved from ColV plasmids. Among APEC isolates, the prevalence of ColBM sequences helps account for the previously observed differences in prevalence between genes of the "conserved" portion of the putative virulence cluster of pAPEC-O2-ColV and those genes within its "variable" portion. These results, in conjunction with Southern blotting and probing of representative ColBM-positive strains, indicate that this "conserved" cluster of putative virulence genes is primarily linked to F-type virulence plasmids among the APEC isolates studied.  相似文献   

7.
【背景】大肠杆菌病和沙门菌病是最常见的家禽细菌性疾病,给养禽业造成严重经济损失。另外,禽大肠杆菌和沙门菌也是重要的人畜共患病原菌,可通过禽类及其产品传播给人类,对人类健康造成严重威胁。加强禽大肠杆菌和沙门菌的快速鉴别检测,对养禽业和公共卫生都具有重要意义。【目的】建立禽大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌的多重PCR检测方法。【方法】通过比较分析确定禽致病性大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌的特异靶标基因,设计5对特异性引物,通过条件优化建立多重PCR方法,分析该多重PCR方法的特异性、敏感性及可靠性。【结果】该方法能特异性地鉴定禽致病性大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌,每个PCR反应的最低检出限分别为103 CFU细菌和100 pg基因组DNA。临床分离菌株检测显示,多重PCR与传统血清学方法结果一致。【结论】建立的多重PCR方法能够快速鉴别禽致病性大肠杆菌和不同血清型沙门菌,对禽大肠杆菌病和沙门菌病的流行病学调查及临床检测具有重要意义。  相似文献   

8.
Neonatal meningitis Escherichia coli (NMEC) is one of the top causes of neonatal meningitis worldwide. Here, 85 NMEC and 204 fecal E. coli isolates from healthy humans (HFEC) were compared for possession of traits related to virulence, antimicrobial resistance, and plasmid content. This comparison was done to identify traits that typify NMEC and distinguish it from commensal strains to refine the definition of the NMEC subpathotype, identify traits that might contribute to NMEC pathogenesis, and facilitate choices of NMEC strains for future study. A large number of E. coli strains from both groups were untypeable, with the most common serogroups occurring among NMEC being O18, followed by O83, O7, O12, and O1. NMEC strains were more likely than HFEC strains to be assigned to the B2 phylogenetic group. Few NMEC or HFEC strains were resistant to antimicrobials. Genes that best discriminated between NMEC and HFEC strains and that were present in more than 50% of NMEC isolates were mainly from extraintestinal pathogenic E. coli genomic and plasmid pathogenicity islands. Several of these defining traits had not previously been associated with NMEC pathogenesis, are of unknown function, and are plasmid located. Several genes that had been previously associated with NMEC virulence did not dominate among the NMEC isolates. These data suggest that there is much about NMEC virulence that is unknown and that there are pitfalls to studying single NMEC isolates to represent the entire subpathotype.  相似文献   

9.
Extra-intestinal pathogenic E. coli (ExPEC), including avian pathogenic E. coli (APEC), pose a considerable threat to both human and animal health, with illness causing substantial economic loss. APEC strain χ7122 (O78∶K80∶H9), containing three large plasmids [pChi7122-1 (IncFIB/FIIA-FIC), pChi7122-2 (IncFII), and pChi7122-3 (IncI(2))]; and a small plasmid pChi7122-4 (ColE2-like), has been used for many years as a model strain to study the molecular mechanisms of ExPEC pathogenicity and zoonotic potential. We previously sequenced and characterized the plasmid pChi7122-1 and determined its importance in systemic APEC infection; however the roles of the other pChi7122 plasmids were still ambiguous. Herein we present the sequence of the remaining pChi7122 plasmids, confirming that pChi7122-2 and pChi7122-3 encode an ABC iron transport system (eitABCD) and a putative type IV fimbriae respectively, whereas pChi7122-4 is a cryptic plasmid. New features were also identified, including a gene cluster on pChi7122-2 that is not present in other E. coli strains but is found in Salmonella serovars and is predicted to encode the sugars catabolic pathways. In vitro evaluation of the APEC χ7122 derivative strains with the three large plasmids, either individually or in combinations, provided new insights into the role of plasmids in biofilm formation, bile and acid tolerance, and the interaction of E. coli strains with 3-D cultures of intestinal epithelial cells. In this study, we show that the nature and combinations of plasmids, as well as the background of the host strains, have an effect on these phenomena. Our data reveal new insights into the role of extra-chromosomal sequences in fitness and diversity of ExPEC in their phenotypes.  相似文献   

10.
A 43-MDa conjugative plasmid isolated from an avian septicemic Escherichia coli (APEC) strain possessing genes related to the adhesion and invasion capacities of in vitro-cultured cells was sequenced. The results demonstrated that the 43-MDa plasmid harbors bacterial pathogenicity-related sequences which probably allow the wild-type pathogenic strain to adhere to and invade tissues and to cause septicemia in poultry. The existence of homology sequences to sequences belonging to other human pathogenic Enterobacteriaceae like Escherichia coli O157:H7, Shigella and Salmonella was also observed. The presence of these sequences in this plasmid could indicate that there is horizontal genetic transfer between bacterial strains isolated from different host species. In conclusion, the present study suggests that APEC strains harbor high-molecular weight plasmids that present pathogenicity-related sequences and that these are probably responsible for the pathogenicity exhibited by these strains. The presence of human pathogenicity-associated sequences in APEC conjugative plasmids suggests that these strains could represent a zoonotic risk.  相似文献   

11.

Background  

Suppression subtractive hybridization (SSH) strategy was used with extraintestinal pathogenic Escherichia coli (EXPEC) that cause avian colibacillosis (avian pathogenic E. coli or APEC) and human urinary tract infections (uropathogenic E. coli or UPEC) to determine if they possessed genes that were host and/or niche specific. Both APEC and UPEC isolates were used as tester and driver strains in 4 different SSHs in order to obtain APEC- and UPEC-specific subtraction fragments (SFs).  相似文献   

12.
In this study we assessed the occurrence, diversity and conjugative potential of plasmids in integron-carrying Aeromonas and Enterobacteriaceae from wastewaters. Sixty-six strains were included as donors in mating assays using rifampicin-resistant Escherichia coli and Pseudomonas putida recipient strains. The diversity of plasmids from donors and transconjugants (resistant to tetracycline or streptomycin) was evaluated by restriction analysis and replicon typing targeting 19 incompatibility groups. Restriction patterns revealed a diverse plasmid pool present in these strains. Plasmids were assigned to FrepB (Aeromonas salmonicida, Aeromonas veronii, Aeromonas sp., E.?coli, Enterobacter sp.), FIC (A.?salmonicida, Aeromonas sp.), FIA (Shigella sp.), I1 (A.?veronii, Aeromonas sp., E.?coli), HI1 (E.?coli) and U (Aeromonas media) replicons. Nevertheless, 50% of the plasmids could not be assigned to any replicon type. Among integron-positive transconjugants, FrepB, I1 and HI1 replicons were detected. Results showed that wastewaters enclose a rich plasmid pool associated with integron-carrying bacteria, capable of conjugating to different bacterial hosts. Moreover, replicons detected in this study in Aeromonas strains expand our current knowledge of plasmid diversity in this genus.  相似文献   

13.
Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening.  相似文献   

14.
A genotypic comparison using pulsed-field gel electrophoresis (PFGE), amplified ribosomal restriction analysis (ARDRA) as well as PCRs targeting virulence associated genes reported elsewhere in avian pathogenic Escherichia coli(APEC) was made between E. coli strains isolated from chickens with colibacillosis and those from the feces of apparently healthy chickens in Japan. The majority (67%) of clinical isolates belonged to a certain phylogenetic ARDRA but not PFGE cluster, with virulence-related genes carried by ColV plasmid being markedly prevalent. The result suggests that APEC strains originated from the same "ancestor" in the course of E. coli evolution.  相似文献   

15.
Autotransporters are secreted bacterial proteins exhibiting diverse virulence functions. Various autotransporters have been identified among Escherichia coli associated with intestinal or extraintestinal infections; however, the specific distribution of autotransporter sequences among a diversity of E. coli strains has not been investigated. We have validated the use of a multiplex PCR assay to screen for the presence of autotransporter sequences. Herein, we determined the presence of 13 autotransporter sequences and five allelic variants of antigen 43 (Ag43) among 491 E. coli isolates from human urinary tract infections, diarrheagenic E. coli, and avian pathogenic E. coli (APEC) and E. coli reference strains belonging to the ECOR collection. Clinical isolates were also classified into established phylogenetic groups. The results indicated that Ag43 alleles were significantly associated with clinical isolates (93%) compared to commensal isolates (56%) and that agn43K12 was the most common and widely distributed allele. agn43 allelic variants were also phylogenetically distributed. Sequences encoding espC, espP, and sepA and agn43 alleles EDL933 and RS218 were significantly associated with diarrheagenic E. coli strains compared to other groups. tsh was highly associated with APEC strains, whereas sat was absent from APEC. vat, sat, and pic were associated with urinary tract isolates and were identified predominantly in isolates belonging to either group B2 or D of the phylogenetic groups based on the ECOR strain collection. Overall, the results indicate that specific autotransporter sequences are associated with the source and/or phylogenetic background of strains and suggest that, in some cases, autotransporter gene profiles may be useful for comparative analysis of E. coli strains from clinical, food, and environmental sources.  相似文献   

16.
【背景】禽致病性大肠杆菌(Avian pathogenic Escherichia coli,APEC)可引起禽的大肠杆菌病,严重危害养禽业。V型分泌系统(Type V secretion system,T5SS)在APEC感染过程中发挥重要作用。【目的】分析不同致病型大肠杆菌的T5SS在APEC中的分布规律,探讨T5SS与APEC的大肠杆菌进化分群及其他毒力因子的关联性。【方法】根据大肠杆菌的15个T5SS序列设计特异性引物,采用PCR检测T5SS在APEC临床分离株中的分布;分析APEC菌株的系统进化分群及毒力因子分布,探讨T5SS分布和APEC系统进化分群及毒力因子的相关性。【结果】T5SS在APEC临床分离株中广泛分布,其中ydeK和pplfP的分布率最高,分别为98.55%和92.03%;而upaC和pic的分布率均低于10%。系统进化分群结果显示,APEC主要属于A、B1和D进化分群,B2群较少;T5SS分布和进化分群分析发现ehaA、ehaB、pic、vat在D进化分群APEC菌株中分布率较高,而ehaG、ag43/flu、apaC主要分布于A及B1群APEC中。然而,T5SS和APEC其他毒力基因分布无明显的关联性。【结论】T5SS广泛存在于APEC分离株中,且部分T5SS分布与大肠杆菌系统进化分群存在关联性。  相似文献   

17.
A 3.2-kb fragment encoding five genes, parCBA/DE, in two divergently transcribed operons promotes stable maintenance of the replicon of the broad-host-range plasmid RK2 in a vector-independent manner in Escherichia coli. The parDE operon has been shown to contribute to stabilization through the postsegregational killing of plasmid-free daughter cells, while the parCBA operon encodes a resolvase, ParA, that mediates the resolution of plasmid multimers through site-specific recombination. To date, evidence indicates that multimer resolution alone does not play a significant role in RK2 stable maintenance by the parCBA operon in E. coli. It has been proposed, instead, that the parCBA region encodes an additional stability mechanism, a partition system, that ensures that each daughter cell receives a plasmid copy at cell division. However, studies carried out to date have not directly determined the plasmid stabilization activity of the parCBA operon alone. An assessment was made of the relative contributions of postsegregational killing (parDE) and the putative partitioning system (parCBA) to the stabilization of mini-RK2 replicons in E. coli. Mini-RK2 replicons carrying either the entire 3.2-kb (parCBA/DE) fragment or the 2.3-kb parCBA region alone were found to be stably maintained in two E. coli strains tested. The stabilization found is not due to resolution of multimers. The stabilizing effectiveness of parCBA was substantially reduced when the plasmid copy number was lowered, as in the case of E. coli cells carrying a temperature-sensitive mini-RK2 replicon grown at a nonpermissive temperature. The presence of the entire 3.2-kb region effectively stabilized the replicon, however, under both low- and high-copy-number-conditions. In those instances of decreased plasmid copy number, the postsegregational killing activity, encoded by parDE, either as part of the 3.2-kb fragment or alone played the major role in the stabilization of mini-RK2 replicons within the growing bacterial population. Our findings indicate that the parCBA operon functions to stabilize by a mechanism other than cell killing and resolution of plasmid multimers, while the parDE operon functions solely to stabilize plasmids by cell killing. The relative contribution of each system to stabilization depends on plasmid copy number and the particular E. coli host.  相似文献   

18.
Uropathogenic Escherichia coli (UPEC) strains are responsible for the majority of uncomplicated urinary tract infections, which can present clinically as cystitis or pyelonephritis. UPEC strain CFT073, isolated from the blood of a patient with acute pyelonephritis, was most cytotoxic and most virulent in mice among our strain collection. Based on the genome sequence of CFT073, microarrays were utilized in comparative genomic hybridization (CGH) analysis of a panel of uropathogenic and fecal/commensal E. coli isolates. Genomic DNA from seven UPEC (three pyelonephritis and four cystitis) isolates and three fecal/commensal strains, including K-12 MG1655, was hybridized to the CFT073 microarray. The CFT073 genome contains 5,379 genes; CGH analysis revealed that 2,820 (52.4%) of these genes were common to all 11 E. coli strains, yet only 173 UPEC-specific genes were found by CGH to be present in all UPEC strains but in none of the fecal/commensal strains. When the sequences of three additional sequenced UPEC strains (UTI89, 536, and F11) and a commensal strain (HS) were added to the analysis, 131 genes present in all UPEC strains but in no fecal/commensal strains were identified. Seven previously unrecognized genomic islands (>30 kb) were delineated by CGH in addition to the three known pathogenicity islands. These genomic islands comprise 672 kb of the 5,231-kb (12.8%) genome, demonstrating the importance of horizontal transfer for UPEC and the mosaic structure of the genome. UPEC strains contain a greater number of iron acquisition systems than do fecal/commensal strains, which is reflective of the adaptation to the iron-limiting urinary tract environment. Each strain displayed distinct differences in the number and type of known virulence factors. The large number of hypothetical genes in the CFT073 genome, especially those shown to be UPEC specific, strongly suggests that many urovirulence factors remain uncharacterized.  相似文献   

19.
Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained bla CTX-M-14, two bla SHV-12, two bla CMY-2 and one bla SHV-2. Two strains harboured qnrA, and two qnrA together with aac(6’)-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured bla CMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.  相似文献   

20.
Since extraintestinal pathogenic Escherichia coli (ExPEC) strains from human and avian hosts encounter similar challenges in establishing infection in extraintestinal locations, they may share similar contents of virulence genes and capacities to cause disease. In the present study, 1,074 ExPEC isolates were classified by phylogenetic group and possession of 67 other traits, including virulence-associated genes and plasmid replicon types. These ExPEC isolates included 452 avian pathogenic E. coli strains from avian colibacillosis, 91 neonatal meningitis E. coli (NMEC) strains causing human neonatal meningitis, and 531 uropathogenic E. coli strains from human urinary tract infections. Cluster analysis of the data revealed that most members of each subpathotype represent a genetically distinct group and have distinguishing characteristics. However, a genotyping cluster containing 108 ExPEC isolates was identified, heavily mixed with regard to subpathotype, in which there was substantial trait overlap. Many of the isolates within this cluster belonged to the O1, O2, or O18 serogroup. Also, 58% belonged to the ST95 multilocus sequence typing group, and over 90% of them were assigned to the B2 phylogenetic group typical of human ExPEC strains. This cluster contained strains with a high number of both chromosome- and plasmid-associated ExPEC genes. Further characterization of this ExPEC subset with zoonotic potential urges future studies exploring the potential for the transmission of certain ExPEC strains between humans and animals. Also, the widespread occurrence of plasmids among NMEC strains and members of the mixed cluster suggests that plasmid-mediated virulence in these pathotypes warrants further attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号