首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V. Majerus  P. Bertin  S. Lutts 《Plant and Soil》2009,324(1-2):253-265
Iron toxicity occurs under flooded conditions such as those prevailing in lowland rice fields and is due to an excess of ferrous ions. Ferritin is a multimeric protein responsible for Fe sequestration and storage, playing a key role in Fe homeostasis. Our aim was to study the modalities of overall ferritin synthesis in different organs of young seedlings from the African rice species (Oryza glaberrima) in relation to the putative involvement of abscisic acid (ABA) and oxidative stress in signalling processes. Seedlings from a moderately resistant to iron toxicity cultivar were grown in hydroponic culture for 2 weeks and treated with 500 mg l?1 Fe2+ in the presence or in the absence of 200?µM ABA, 50?µM methylviologen or 50?µM fluridone. Iron treatment increased iron and malondialdehyde concentration in all organs as well as ABA in roots and laminae. Although ferritin protein was detected in controls plants, iron treatment strongly reinforced its accumulation in sheaths and laminae after 24 h and 72 h. Ferritin mRNA was induced as early as 24 h after the beginning of the Fe-treatment in sheaths and, to a higher extent, in laminae. In the absence of iron treatment, exogenous ABA increased ferritin mRNA in laminae only but did not lead to further ferritin accumulation. Unexpectedly, it decreased ferritin mRNA levels in the sheaths of iron-treated plants and may thus have a dual influence depending on the considered organ. The inhibitor of ABA synthesis fluridone reduced endogenous ABA but did not compromise ferritin gene expression or ferritin synthesis, whatever the iron dose. Methyviologen application induced obvious oxidative damages but reduced ferritin synthesis. It is suggested that the signalling pathway leading to ferritin synthesis in the semi-aquatic African rice species may involve other components than those reported for typical terrestrial plants.  相似文献   

2.
Qu le Q  Yoshihara T  Ooyama A  Goto F  Takaiwa F 《Planta》2005,222(2):225-233
To answer the question whether iron accumulation in transgenic rice seeds depends on the expression level of exogenous soybean ferritin, we generated two kinds of ferritin hyper-expressing rice lines by introducing soybean ferritin SoyferH-1 gene under the control of the rice seed storage glutelin gene promoter, GluB-1 and the rice seed storage globulin gene promoter, Glb-1, (GluB-1/SoyferH-1 and Glb-1/SoyferH-1, DF lines), and by introducing the SoyferH-1 gene under the control of Glb-1 promoter alone (Glb-1/SoyferH-1, OF lines). Ferritin expression was restricted to the endosperm in both lines and protein levels determined by western blot analysis were up to 13-fold higher than in a construct previously reported FK22 (GluB-1/SoyferH-1, in genetically Kitaake bachground); however, the maximum iron concentrations in seeds of both of the new lines were only about 30% higher than FK22. The maximum iron concentration in the OF and DF lines was about threefold higher than in the non-transformant. The mean Fe concentration in leaves of ferritin over-expressing lines decreased to less than half of the non-transformant while that the plant biomasses and seed yields of the ferritin-transformed lines were not significantly different from those of the non-transformant, suggesting that accumulation of Fe in seeds of hyper-expression ferritin rice did not always depend on the expression level of exogenous ferritin but may have been limited by Fe uptake and transport. No obvious differences were observed for other divalent-metal concentrations (Ca, Cd, Cu, Mg, Mn and Zn) in the seeds among all experimental lines and non-transformant.  相似文献   

3.
4.
5.
6.
7.
8.
A. Mehta  A. Deshpande  L. Bettedi  F. Missirlis   《Biochimie》2009,91(10):1331-1334
Ferritins are highly stable, multi-subunit protein complexes with iron-binding capacities that reach 4500 iron atoms per ferritin molecule. The strict dependence of cellular physiology on an adequate supply of iron cofactors has likely been a key driving force in the evolution of ferritins as iron storage molecules. The insect intestine has long been known to contain cells that are responsive to dietary iron levels and a specialized group of “iron cells” that always accumulate iron-loaded ferritin, even when no supplementary iron is added to the diet. Here, we further characterize ferritin localization in Drosophila melanogaster larvae raised under iron-enriched and iron-depleted conditions. High dietary iron intake results in ferritin accumulation in the anterior midgut, but also in garland (wreath) cells and in pericardial cells, which together filter the circulating hemolymph. Ferritin is also abundant in the brain, where levels remain unaltered following dietary iron chelation, a treatment that depletes ferritin from the aforementioned tissues. We attribute the stability of ferritin levels in the brain to the function of the blood-brain barrier that may shield this organ from systemic iron fluctuations. Most intriguingly, our dietary manipulations demonstrably iron-depleted the iron cells without a concomitant reduction in their production of ferritin. Therefore, insect iron cells may constitute an exception from the evolutionary norm with respect to iron-dependent ferritin regulation. It will be of interest to decipher both the physiological purpose served and the mechanism employed to untie ferritin regulation from cellular iron levels in this cell type.  相似文献   

9.
10.
Ferritin, a protein widespread in nature, concentrates iron ∼1011–1012-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n= 7) is higher than in animals (n= 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling. Received: 25 July 1995 / Accepted: 3 October 1995  相似文献   

11.
12.
13.
14.
15.
Oxidative stress is a major contributor to kidney injury following ischemia reperfusion. Ferritin, a highly conserved iron-binding protein, is a key protein in the maintenance of cellular iron homeostasis and protection from oxidative stress. Ferritin mitigates oxidant stress by sequestering iron and preventing its participation in reactions that generate reactive oxygen species. Ferritin is composed of two subunit types, ferritin H and ferritin L. Using an in vivo model that enables conditional tissue-specific doxycycline-inducible expression of ferritin H in the mouse kidney, we tested the hypothesis that an increased level of H-rich ferritin is renoprotective in ischemic acute renal failure. Prior to induction of ischemia, doxycycline increased ferritin H in the kidneys of the transgenic mice nearly 6.5-fold. Following reperfusion for 24 hours, induction of neutrophil gelatinous-associated lipocalin (NGAL, a urine marker of renal dysfunction) was reduced in the ferritin H overexpressers compared to controls. Histopathologic examination following ischemia reperfusion revealed that ferritin H overexpression increased intact nuclei in renal tubules, reduced the frequency of tubular profiles with luminal cast materials, and reduced activated caspase-3 in the kidney. In addition, generation of 4-hydroxy 2-nonenal protein adducts, a measurement of oxidant stress, was decreased in ischemia-reperfused kidneys of ferritin H overexpressers. These studies demonstrate that ferritin H can inhibit apoptotic cell death, enhance tubular epithelial viability, and preserve renal function by limiting oxidative stress following ischemia reperfusion injury.  相似文献   

16.
Ferritin is a multimer of 24 subunits of heavy and light chains. In mammals, iron taken into cells is stored in ferritin or incorporated into iron-containing proteins. Very little ferritin is found circulating in mammalian serum; most is retained in the cytoplasm. Female mosquitoes, such as Aedes aegypti (yellow fever mosquito, Diptera), require a blood meal for oogenesis. Mosquitoes receive a potentially toxic level of iron in the blood meal which must be processed and stored. We demonstrate by 59Fe pulse-chase experiments that cultured A. aegypti larval CCL-125 cells take up iron from culture media and store it in ferritin found mainly in the membrane fraction and secrete iron-loaded ferritin. We observe that in these larval cells ferritin co-localizes with ceramide-containing membranes in the absence of iron. With iron treatment, ferritin is found associated with ceramide-containing membranes as well as in cytoplasmic non-ceramide vesicles. Treatment of CCL-125 cells with iron and CI-976, an inhibitor of lysophospholipid acyl transferases, disrupts ferritin secretion with a concomitant decrease in cell viability. Interfering with ferritin secretion may limit the ability of mosquitoes to adjust to the high iron load of the blood meal and decrease iron delivery to the ovaries reducing egg numbers.  相似文献   

17.
We used particle bombardment to produce transgenic wheat and rice plants expressing recombinant soybean ferritin, a protein that can store large amounts of iron. The cDNA sequence was isolated from soybean by RT-PCR and expressed using the constitutive maize ubiquitin-1 promoter. The presence of ferritin mRNA and protein was confirmed in the vegetative tissues and seeds of transgenic wheat and rice plants by northern and western blot analysis, respectively. The levels of ferritin mRNA were similar in the vegetative tissues of both species, but ferritin protein levels were higher in rice. Both ferritin mRNA and protein levels were lower in wheat and rice seeds. ICAP spectrometry showed that iron levels increased only in vegetative tissues of transgenic plants, and not in the seeds. These data indicate that recombinant ferritin expression under the control of the maize ubiquitin promoter significantly increases iron levels invegetative tissues, but that the levels of recombinant ferritin in seeds are not sufficient to increase iron levels significantly over those in the seeds of non-transgenic plants.  相似文献   

18.
Ferritin proteins have an enormous capacity to store iron in cells. In search for the best conditions to accumulate and store bioavailable iron, we made use of a double mutant null for the monothiol glutaredoxins GRX3 and GRX4. The strain grx3grx4 accumulates high iron concentrations in the cytoplasm, making the metal easily available for ferritin chelation. Here, we perform a comparative study between human (L and H) and soya bean ferritins (H1 and H2) function in the eukaryotic system Saccharomyces cerevisiae. We demonstrate that the four human and soya bean ferritin chains are successfully expressed in our model system. Upon coexpression of either both human or soya bean ferritin chains, respiratory conditions along with iron supplementation led us to obtain the maximum yields of iron stored in yeast described to date. Human and soya bean ferritin chains are functional and present equivalent properties as promoters of cell survival in iron overload conditions. The best system revealed that the four human and soya bean ferritins possess a novel function as anti-ageing proteins in conditions of iron excess. In this respect, both ferritin chains with oxidoreductase capacity (human-H and soya bean-H2) bear the highest capacity to extend life suggesting the possibility of an evolutionary conservation.  相似文献   

19.
余进德  熊宏  宋健  陈海涛  刘小烛  丁勇 《广西植物》2017,37(9):1096-1100
油质蛋白基因对种子中油体的形成至关重要,该研究通过实时荧光定量PCR,对麻疯树的两个油质蛋白基因JcOle14.3和JcOle16.6在种子不同发育时期的表达模式进行了分析。结果表明:两个基因在种子发育初期(10~30 d)表达量逐渐升高,但表达水平均较低;40 d时表达量急剧增加并达到最高,而种子发育后期(50~55 d)两个基因表达水平均逐渐降低。由此可初步推测,JcOle14.3和JcOle16.6基因的表达量可能与种子油脂积累量存在正相关。该研究结果为麻疯树油体形成机理和油质蛋白的深入研究提供了理论基础。  相似文献   

20.
Iron induces ferritin synthesis in maize plantlets   总被引:26,自引:0,他引:26  
The iron-storage protein ferritin has been purified to homogeneity from maize seeds, allowing to determine the sequence of the first 29 NH2-terminal amino acids of its subunit and to raise specific rabbit polyclonal antibodies. Addition of 500 M Fe-EDTA/75 M Fe-citrate to hydroponic culture solutions of maize plantlets, previously starved for iron, led to a significant increase of the iron concentration of roots and leaves, albeit root iron was mainly found associated with the apoplast. Immunodetection of ferritin by western blots indicated that this iron treatment induced ferritin protein accumulation in roots and leaves over a period of 3 days. In order to investigate this induction at the ferritin mRNA level, various ferritin cDNA clones were isolated from a cDNA library prepared from poly(A)+ mRNA isolated from roots 48 h after iron treatment. These cDNAs were classified into two groups called FM1 and FM2. Upstream of the sequence encoding the mature ferritin subunit, both of these cDNAs contained an in-frame coding sequence with the characteristics of a transit peptide for plastid targeting. Two members of the FM1 subfamily, both partial at their 5 extremity, were characterized. They are identical, except in their 3 untranslated region: FM1A extends 162 nucleotides beyond the 3 terminus of FM1B. These two mRNAs could arise from the use of two different polyadenylation signals. FM2 is 96% identical to FM1 and contains 45 nucleotides of 5 untranslated region. Northern analyses of root and leaf RNAs, at different times after iron treatment, revealed ferritin mRNA accumulation in response to iron. Ferritin mRNA accumulation was transient and particularly abundant in leaves, reaching a maximum at 24 h. The level of ferritin mRNA in roots was affected to a lesser extent than in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号