首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
Qian Wang  Luhua Lai 《Proteins》2014,82(10):2472-2482
Target structure‐based virtual screening, which employs protein‐small molecule docking to identify potential ligands, has been widely used in small‐molecule drug discovery. In the present study, we used a protein–protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all‐to‐all protein–protein docking run on a large dataset was performed. The three‐dimensional rigid docking program SDOCK was used to examine protein–protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z‐score, and convergency of the low‐score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all‐to‐all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor‐α (TNFα), which is a well‐known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top‐ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein–protein docking for the discovery of novel binding proteins for specific protein targets. Proteins 2014; 82:2472–2482. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Reliability in docking of ligand molecules to proteins or other targets is an important challenge for molecular modeling. Applications of the docking technique include not only prediction of the binding mode of novel drugs, but also other problems like the study of protein-protein interactions. Here we present a study on the reliability of the results obtained with the popular AutoDock program. We have performed systematical studies to test the ability of AutoDock to reproduce eight different protein/ligand complexes for which the structure was known, without prior knowledge of the binding site. More specifically, we look at factors influencing the accuracy of the final structure, such as the number of torsional degrees of freedom in the ligand. We conclude that the Autodock program package is able to select the correct complexes based on the energy without prior knowledge of the binding site. We named this application blind docking, as the docking algorithm is not able to "see" the binding site but can still find it. The success of blind docking represents an important finding in the era of structural genomics.  相似文献   

3.
Protein‐protein interactions control a large range of biological processes and their identification is essential to understand the underlying biological mechanisms. To complement experimental approaches, in silico methods are available to investigate protein‐protein interactions. Cross‐docking methods, in particular, can be used to predict protein binding sites. However, proteins can interact with numerous partners and can present multiple binding sites on their surface, which may alter the binding site prediction quality. We evaluate the binding site predictions obtained using complete cross‐docking simulations of 358 proteins with 2 different scoring schemes accounting for multiple binding sites. Despite overall good binding site prediction performances, 68 cases were still associated with very low prediction quality, presenting individual area under the specificity‐sensitivity ROC curve (AUC) values below the random AUC threshold of 0.5, since cross‐docking calculations can lead to the identification of alternate protein binding sites (that are different from the reference experimental sites). For the large majority of these proteins, we show that the predicted alternate binding sites correspond to interaction sites with hidden partners, that is, partners not included in the original cross‐docking dataset. Among those new partners, we find proteins, but also nucleic acid molecules. Finally, for proteins with multiple binding sites on their surface, we investigated the structural determinants associated with the binding sites the most targeted by the docking partners.  相似文献   

4.
Modeling protein flexibility constitutes a major challenge in accurate prediction of protein-ligand and protein-protein interactions in docking simulations. The lack of a reliable method for predicting the conformational changes relevant to substrate binding prevents the productive application of computational docking to proteins that undergo large structural rearrangements. Here, we examine how coarse-grained normal mode analysis has been advantageously applied to modeling protein flexibility associated with ligand binding. First, we highlight recent studies that have shown that there is a close agreement between the large-scale collective motions of proteins predicted by elastic network models and the structural changes experimentally observed upon ligand binding. Then, we discuss studies that have exploited the predicted soft modes in docking simulations. Two general strategies are noted: pregeneration of conformational ensembles that are then utilized as input for standard fixed-backbone docking and protein structure deformation along normal modes concurrent to docking. These studies show that the structural changes apparently "induced" upon ligand binding occur selectively along the soft modes accessible to the protein prior to ligand binding. They further suggest that proteins offer suitable means of accommodating/facilitating the recognition and binding of their ligand, presumably acquired by evolutionary selection of the suitable three-dimensional structure.  相似文献   

5.
Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface-based docking performed marginally better. The interface-based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2-fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure-based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.  相似文献   

6.
Accommodating backbone flexibility continues to be the most difficult challenge in computational docking of protein-protein complexes. Towards that end, we simulate four distinct biophysical models of protein binding in RosettaDock, a multiscale Monte-Carlo-based algorithm that uses a quasi-kinetic search process to emulate the diffusional encounter of two proteins and to identify low-energy complexes. The four binding models are as follows: (1) key-lock (KL) model, using rigid-backbone docking; (2) conformer selection (CS) model, using a novel ensemble docking algorithm; (3) induced fit (IF) model, using energy-gradient-based backbone minimization; and (4) combined conformer selection/induced fit (CS/IF) model. Backbone flexibility was limited to the smaller partner of the complex, structural ensembles were generated using Rosetta refinement methods, and docking consisted of local perturbations around the complexed conformation using unbound component crystal structures for a set of 21 target complexes. The lowest-energy structure contained > 30% of the native residue-residue contacts for 9, 13, 13, and 14 targets for KL, CS, IF, and CS/IF docking, respectively. When applied to 15 targets using nuclear magnetic resonance ensembles of the smaller protein, the lowest-energy structure recovered at least 30% native residue contacts in 3, 8, 4, and 8 targets for KL, CS, IF, and CS/IF docking, respectively. CS/IF docking of the nuclear magnetic resonance ensemble performed equally well or better than KL docking with the unbound crystal structure in 10 of 15 cases. The marked success of CS and CS/IF docking shows that ensemble docking can be a versatile and effective method for accommodating conformational plasticity in docking and serves as a demonstration for the CS theory—that binding-competent conformers exist in the unbound ensemble and can be selected based on their favorable binding energies.  相似文献   

7.
Chen YZ  Zhi DG 《Proteins》2001,43(2):217-226
Ligand-protein docking has been developed and used in facilitating new drug discoveries. In this approach, docking single or multiple small molecules to a receptor site is attempted to find putative ligands. A number of studies have shown that docking algorithms are capable of finding ligands and binding conformations at a receptor site close to experimentally determined structures. These algorithms are expected to be equally applicable to the identification of multiple proteins to which a small molecule can bind or weakly bind. We introduce a ligand-protein inverse-docking approach for finding potential protein targets of a small molecule by the computer-automated docking search of a protein cavity database. This database is developed from protein structures in the Protein Data Bank (PDB). Docking is conducted with a procedure involving multiple-conformer shape-matching alignment of a molecule to a cavity followed by molecular-mechanics torsion optimization and energy minimization on both the molecule and the protein residues at the binding region. Scoring is conducted by the evaluation of molecular-mechanics energy and, when applicable, by the further analysis of binding competitiveness against other ligands that bind to the same receptor site in at least one PDB entry. Testing results on two therapeutic agents, 4H-tamoxifen and vitamin E, showed that 50% of the computer-identified potential protein targets were implicated or confirmed by experiments. The application of this approach may facilitate the prediction of unknown and secondary therapeutic target proteins and those related to the side effects and toxicity of a drug or drug candidate. Proteins 2001;43:217-226.  相似文献   

8.
MOTIVATION: Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. RESULTS: We have developed a fast algorithm for filtering docked conformations with good surface complementarity, and ranking them based on their clustering properties. The free energy filters select complexes with lowest desolvation and electrostatic energies. Clustering is then used to smooth the local minima and to select the ones with the broadest energy wells-a property associated with the free energy at the binding site. The robustness of the method was tested on sets of 2000 docked conformations generated for 48 pairs of interacting proteins. In 31 of these cases, the top 10 predictions include at least one near-native complex, with an average RMSD of 5 A from the native structure. The docking and discrimination method also provides good results for a number of complexes that were used as targets in the Critical Assessment of PRedictions of Interactions experiment. AVAILABILITY: The fully automated docking and discrimination server ClusPro can be found at http://structure.bu.edu  相似文献   

9.
Virtual screening is one of the major tools used in computer-aided drug discovery. In structure-based virtual screening, the scoring function is critical to identifying the correct docking pose and accurately predicting the binding affinities of compounds. However, the performance of existing scoring functions has been shown to be uneven for different targets, and some important drug targets have proven especially challenging. In these targets, scoring functions cannot accurately identify the native or near-native binding pose of the ligand from among decoy poses, which affects both the accuracy of the binding affinity prediction and the ability of virtual screening to identify true binders in chemical libraries. Here, we present an approach to discriminating native poses from decoys in difficult targets for which several scoring functions failed to correctly identify the native pose. Our approach employs Discrete Molecular Dynamics simulations to incorporate protein-ligand dynamics and the entropic effects of binding. We analyze a collection of poses generated by docking and find that the residence time of the ligand in the native and nativelike binding poses is distinctly longer than that in decoy poses. This finding suggests that molecular simulations offer a unique approach to distinguishing the native (or nativelike) binding pose from decoy poses that cannot be distinguished using scoring functions that evaluate static structures. The success of our method emphasizes the importance of protein-ligand dynamics in the accurate determination of the binding pose, an aspect that is not addressed in typical docking and scoring protocols.  相似文献   

10.
Hwang H  Vreven T  Pierce BG  Hung JH  Weng Z 《Proteins》2010,78(15):3104-3110
We report the performance of the ZDOCK and ZRANK algorithms in CAPRI rounds 13-19 and introduce a novel measure atom contact frequency (ACF). To compute ACF, we identify the residues that most often make contact with the binding partner in the complete set of ZDOCK predictions for each target. We used ACF to predict the interface of the proteins, which, in combination with the biological data available in the literature, is a valuable addition to our docking pipeline. Furthermore, we incorporated a straightforward and efficient clustering algorithm with two purposes: (1) to determine clusters of similar docking poses (corresponding to energy funnels) and (2) to remove redundancies from the final set of predictions. With these new developments, we achieved at least one acceptable prediction for targets 29 and 36, at least one medium-quality prediction for targets 41 and 42, and at least one high-quality prediction for targets 37 and 40; thus, we succeeded for six out of a total of 12 targets.  相似文献   

11.
Stress proteins HSP90 (Heat shock proteins) are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, folding and degradation of proteins. HSP90 have been found in a variety of organisms including pathogens suggesting that they are ancient and conserved proteins. Here, using molecular modeling and docking protocols, antibiotic Geldenamycin and its analog are targeted to the HSP90 homolog proteins of pathogenic protozoans Plasmodium falciparum, Leishmania donovani, Trypanosoma brucei and Entamoeba Histolytica. The designed analogs of geldenamycin have shown drug like property with improved binding affinity to their targets. A decrease in insilico affinity of the analogs for the Human HSP90 target indicates that they can be used as potential drug candidates.  相似文献   

12.
Antizyme (Az) is a highly conserved key regulatory protein bearing a major role in regulating polyamine levels in the cell. It has the ability to bind and inhibit ornithine decarboxylase (ODC), targeting it for degradation. Az inhibitor (AzI) impairs the activity of Az. In this study, we mapped the binding sites of ODC and AzI on Az using Ala scan mutagenesis and generated models of the two complexes by constrained computational docking. In order to scan a large number of mutants in a short time, we developed a workflow combining high-throughput mutagenesis, small-scale parallel partial purification of His-tagged proteins and their immobilization on a tris-nitrilotriacetic-acid-coated surface plasmon resonance chip. This combination of techniques resulted in a significant reduction in time for production and measurement of large numbers of mutant proteins. The data-driven docking results suggest that both proteins occupy the same binding site on Az, with Az binding within a large groove in AzI and ODC. However, single-mutant data provide information concerning the location of the binding sites only, not on their relative orientations. Therefore, we generated a large number of double-mutant cycles between residues on Az and ODC and used the resulting interaction energies to restrict docking. The model of the complex is well defined and accounts for the mutant data generated here, and previously determined biochemical data for this system. Insights on the structure and function of the complexes, as well as general aspects of the method, are discussed.  相似文献   

13.
In many protein-protein docking algorithms, binding site information is used to help predicting the protein complex structures. Using correct and accurate binding site information can increase protein-protein docking success rate significantly. On the other hand, using wrong binding sites information should lead to a failed prediction, or, at least decrease the success rate. Recently, various successful theoretical methods have been proposed to predict the binding sites of proteins. However, the predicted binding site information is not always reliable, sometimes wrong binding site information could be given. Hence there is a high risk to use the predicted binding site information in current docking algorithms. In this paper, a softly restricting method (SRM) is developed to solve this problem. By utilizing predicted binding site information in a proper way, the SRM algorithm is sensitive to the correct binding site information but insensitive to wrong information, which decreases the risk of using predicted binding site information. This SRM is tested on benchmark 3.0 using purely predicted binding site information. The result shows that when the predicted information is correct, SRM increases the success rate significantly; however, even if the predicted information is completely wrong, SRM only decreases success rate slightly, which indicates that the SRM is suitable for utilizing predicted binding site information.  相似文献   

14.
May A  Zacharias M 《Proteins》2007,69(4):774-780
A reduced protein model combined with a systematic docking approach has been employed to predict protein-protein complex structures in CAPRI rounds 6-11. The docking approach termed ATTRACT is based on energy minimization in translational and rotational degrees of freedom of one protein with respect to the second protein starting from many thousand initial protein partner placements. It also allows for approximate inclusion of global flexibility of protein partners during systematic docking by conformational relaxation of the partner proteins in precalculated soft collective backbone degrees of freedom. We have submitted models for six targets, achieved acceptable docking solutions for two targets, and predicted >20% correct contacts for five targets. Possible improvements of the docking approach in particular at the scoring and refinement steps are discussed.  相似文献   

15.
Minocycline, a broad spectrum antibiotic, has been discovered to have inhibitory activity against HIV-1 in vitro, but the targets inhibited are unknown. We used a docking with dynamics protocol developed by us to predict the binding affinities of minocycline against seven active sites of five HIV-1 proteins to putatively identify the potential target(s) of minocycline. The results indicate that minocycline has the highest predicted binding affinity against HIV-1 integrase.  相似文献   

16.
Cavasotto CN  Orry AJ  Abagyan RA 《Proteins》2003,51(3):423-433
G-protein coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in signal transmission. Drugs associated with GPCRs represent more than one fourth of the 100 top-selling drugs and are the targets of more than half of the current therapeutic agents on the market. Our methodology based on the internal coordinate mechanics (ICM) program can accurately identify the ligand-binding pocket in the currently available crystal structures of seven transmembrane (7TM) proteins [bacteriorhodopsin (BR) and bovine rhodopsin (bRho)]. The binding geometry of the ligand can be accurately predicted by ICM flexible docking with and without the loop regions, a useful finding for GPCR docking because the transmembrane regions are easier to model. We also demonstrate that the native ligand can be identified by flexible docking and scoring in 1.5% and 0.2% (for bRho and BR, respectively) of the best scoring compounds from two different types of compound database. The same procedure can be applied to the database of available chemicals to identify specific GPCR binders. Finally, we demonstrate that even if the sidechain positions in the bRho binding pocket are entirely wrong, their correct conformation can be fully restored with high accuracy (0.28 A) through the ICM global optimization with and without the ligand present. These binding site adjustments are critical for flexible docking of new ligands to known structures or for docking to GPCR homology models. The ICM docking method has the potential to be used to "de-orphanize" orphan GPCRs (oGPCRs) and to identify antagonists-agonists for GPCRs if an accurate model (experimentally and computationally validated) of the structure has been constructed or when future crystal structures are determined.  相似文献   

17.
Protein–protein interactions play a key part in most biological processes and understanding their mechanism is a fundamental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of paramount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a protein surface. From the analysis of the protein interfaces generated by a massive cross‐docking experiment using the 168 proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked together, we show that it is also possible to predict a protein's binding residues without having any prior knowledge regarding its potential interaction partners. Evaluating the performance of cross‐docking predictions using the area under the specificity‐sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5 AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that are scattered on the protein surface show that their distribution and growth will depend on the protein's functional group. Finally, in several cases, the binding‐site predictions resulting from the cross‐docking simulations will lead to the identification of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the original benchmark. Proteins 2016; 84:1408–1421. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

18.
19.
Two pathways operate to target newly-synthesised proteins to the endoplasmic reticulum. In one, the signal recognition particle attaches to the signal sequences of nascent chains on ribosomes and slows or stops translation until contact is made with the docking protein at the membrane. The second operates via molecular chaperons. The pathways converge at the level of a 43 kDa signal binding protein integrated into the membrane, where translocation through a proteinaceous pore is initiated. In the lumen, proteins fold and disulphide formation is catalysed by the enzyme protein disulphide isomerase. The heavy chain binding protein may attach to unassembled or unfolded proteins and prevent their exit from the ER to the Golgi. Cholecystokinin (CCK) treatment increases the biosynthesis and secretion of pancreatic proteins, increases the levels of PDI and the 43 kDa binding protein, and reduces levels of BiP. These proteins may be possible targets for genetic manipulation to improve processing of heterologous proteins from cultured mammalian cells.  相似文献   

20.
Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs). MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号